Open Access
BIO Web Conf.
Volume 59, 2023
2023 5th International Conference on Biotechnology and Biomedicine (ICBB 2023)
Article Number 03017
Number of page(s) 6
Section Clinical Trials and Medical Device Monitoring
Published online 08 May 2023
  • Luo, L., Principles of neurobiology. 2015, New York: Garland Science. [Google Scholar]
  • Ascoli, G.A., B.X. Huo, and P.P. Mitra, Sizing up whole-brain neuronal tracing. Science Bulletin, 2022. 67(9): p. 883–884. [CrossRef] [PubMed] [Google Scholar]
  • Deco, G., et al., Rare long-range cortical connections enhance human information processing. Current Biology, 2021. 31(20): p. 4436-+. [CrossRef] [PubMed] [Google Scholar]
  • Mueller, S., et al., Individual Variability in Functional Connectivity Architecture of the Human Brain. Neuron, 2013. 77(3): p. 586–595. [CrossRef] [PubMed] [Google Scholar]
  • Benabdallah, F.Z., et al., An autism spectrum disorder adaptive identification based on the Elimination of brain connections: a proof of long- range underconnectivity. Soft Computing, 2022. 26(10): p. 4701–4711. [CrossRef] [Google Scholar]
  • Brodal, P., The central nervous system: structure and function. 2004, New York: oxford university Press. [Google Scholar]
  • Gong, H., et al., Continuously tracing brain-wide long-distance axonal projections in mice at a one- micron voxel resolution. Neuroimage, 2013. 74: p. 87–98. [CrossRef] [PubMed] [Google Scholar]
  • Peng, H.C., et al., Morphological diversity of single neurons in molecularly defined cell types. Nature, 2021. 598(7879): p. 174-+. [CrossRef] [PubMed] [Google Scholar]
  • Gao, L., et al., Single-neuron projectome of mouse prefrontal cortex. Nature Neuroscience, 2022. 25(4): p. 515-+. [CrossRef] [PubMed] [Google Scholar]
  • Belle, M., et al., A Simple Method for 3D Analysis of Immunolabeled Axonal Tracts in a Transparent Nervous System. Cell Reports, 2014. 9(4): p. 1191–1201. [CrossRef] [PubMed] [Google Scholar]
  • Zhang, Z.Z., et al., Multi-Scale Light-Sheet Fluorescence Microscopy for Fast Whole Brain Imaging. Frontiers in Neuroanatomy, 2021. 15. [Google Scholar]
  • Zhou, C., et al., Continuous subcellular resolution three-dimensional imaging on intact macaque brain. Science Bulletin, 2022. 67(1): p. 85–96. [CrossRef] [PubMed] [Google Scholar]
  • Tanaka, T., et al., Large-scale electron microscopic volume imaging of interfascicular oligodendrocytes in the mouse corpus callosum. Glia, 2021. 69(10): p. 2488–2502. [CrossRef] [PubMed] [Google Scholar]
  • Hayashi, S., et al., Correlative light and volume electron microscopy to study brain development. Microscopy, 2023. [PubMed] [Google Scholar]
  • Faitg, J., et al., 3D neuronal mitochondrial morphology in axons, dendrites, and somata of the aging mouse hippocampus. Cell Reports, 2021. 36(6). [Google Scholar]
  • Steyer, A.M., et al., Pathology of myelinated axons in the PLP-deficient mouse model of spastic paraplegia type 2 revealed by volume imaging using focused ion beam-scanning electron microscopy. Journal of Structural Biology, 2020. 210(2). [Google Scholar]
  • Parlanti, P., et al., Axonal debris accumulates in corneal epithelial cells after intraepithelial corneal nerves are damaged: A focused Ion Beam Scanning Electron Microscopy (FIB-SEM) study. Experimental Eye Research, 2020. 194. [Google Scholar]
  • Steyer, A.M., et al., Focused ion beam-scanning electron microscopy links pathological myelin outfoldings to axonal changes in mice lacking Plp1 or Mag. Glia, 2023. [PubMed] [Google Scholar]
  • Kuan, A.T., et al., Dense neuronal reconstruction through X-ray holographic nano-tomography. Nature Neuroscience, 2020. 23(12): p. 1637–U243. [CrossRef] [PubMed] [Google Scholar]
  • Busse, M., et al., Multi-Scale Investigation of Human Renal Tissue in Three Dimensions. Ieee Transactions on Medical Imaging, 2022. 41(12): p. 3489–3497. [CrossRef] [PubMed] [Google Scholar]
  • Funke, J., et al., Large Scale Image Segmentation with Structured Loss Based Deep Learning for Connectome Reconstruction. Ieee Transactions on Pattern Analysis and Machine Intelligence, 2019. 41(7): p. 1669–1680. [CrossRef] [PubMed] [Google Scholar]
  • Ronneberger, O., P. Fischer, and T. Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. in 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). 2015. Munich, GERMANY. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.