Open Access
Issue
BIO Web Conf.
Volume 61, 2023
6th International Conference on Frontiers of Biological Sciences and Engineering (FBSE 2023)
Article Number 01009
Number of page(s) 10
DOI https://doi.org/10.1051/bioconf/20236101009
Published online 21 June 2023
  • Flombaum, P. et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci U S A 110, 9824-9 (2013). [CrossRef] [PubMed] [Google Scholar]
  • Puente-Sánchez, F. et al. Viable cyanobacteria in the deep continental subsurface. Proc Natl Acad Sci U S A 115, 10702-10707 (2018). [CrossRef] [PubMed] [Google Scholar]
  • Singh, R. et al. Uncovering Potential Applications of Cyanobacteria and Algal Metabolites in Biology, Agriculture and Medicine: Current Status and Future Prospects. Front Microbiol 8, 515 (2017). [CrossRef] [PubMed] [Google Scholar]
  • Lan, E.I. & Wei, C.T. Metabolic engineering of cyanobacteria for the photosynthetic production of succinate. Metab Eng 38, 483-493 (2016). [CrossRef] [PubMed] [Google Scholar]
  • Shabestary, K. et al. Cycling between growth and production phases increases cyanobacteria bioproduction of lactate. Metab Eng 68, 131-141 (2021). [CrossRef] [PubMed] [Google Scholar]
  • Yunus, I.S. et al. Synthetic metabolic pathways for conversion of CO(2) into secreted short-to medium chain hydrocarbons using cyanobacteria. Metab Eng 72, 14-23 (2022). [CrossRef] [PubMed] [Google Scholar]
  • Dismukes, G.C., Carrieri, D., Bennette, N., Ananyev, G.M. & Posewitz, M.C. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19, 235-40 (2008). [CrossRef] [PubMed] [Google Scholar]
  • Lea-Smith, D.J., Vasudevan, R. & Howe, C.J. Generation of Marked and Markerless Mutants in Model Cyanobacterial Species. J Vis Exp (2016). [Google Scholar]
  • Keeling, P.J. Diversity and evolutionary history of plastids and their hosts. Am J Bot 91, 1481-93 (2004). [CrossRef] [PubMed] [Google Scholar]
  • Liu, X., Sheng, J. & Curtiss, R., 3rd. Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci U S A 108, 6899-904 (2011). [CrossRef] [PubMed] [Google Scholar]
  • Ungerer, J. et al. Sustained Photosynthetic Conversion of Atmospheric CO2 to Ethylene in Recombinant Cyanobacterium Synechocystis 6803. Environmental Science and Technology 5(2012). [Google Scholar]
  • Gao, Z., Zhao, H., Li, Z., Tan, X. & Lu, X. Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ. Sci. 5, 9857-9865 (2012). [CrossRef] [Google Scholar]
  • Shabestary, K. & Hudson, E.P. Computational metabolic engineering strategies for growth-coupled biofuel production by Synechocystis</i&gt. in Metabolic engineering communications Vol. 3 216-226 (2016). [CrossRef] [PubMed] [Google Scholar]
  • Song, K., Tan, X., Liang, Y. & Lu, X. The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production. Appl Microbiol Biotechnol 100, 7865-75 (2016). [CrossRef] [PubMed] [Google Scholar]
  • Yang, G. et al. Photosynthetic Production of Sunscreen Shinorine Using an Engineered Cyanobacterium. ACS Synth Biol 7, 664-671 (2018). [CrossRef] [PubMed] [Google Scholar]
  • Lin, P.C. & Pakrasi, H.B. Engineering cyanobacteria for production of terpenoids. Planta 249, 145-154 (2019). [CrossRef] [PubMed] [Google Scholar]
  • Yu, J. et al. Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. Scientific Reports 5, 8132 (2015). [CrossRef] [PubMed] [Google Scholar]
  • Sezonov, G., Joseleau-Petit, D. & D'Ari, R. Escherichia coli Physiology in Luria-Bertani Broth. Journal of Bacteriology 189, 8746-8749 (2007). [CrossRef] [PubMed] [Google Scholar]
  • Snoep, J.L., Mrwebi, M., Schuurmans, J.M., Rohwer, J.M. & Teixeira de Mattos, M.J. Control of specific growth rate in Saccharomyces cerevisiae. Microbiology 155, 1699-1707 (2009). [CrossRef] [PubMed] [Google Scholar]
  • Yu, J.J. et al. Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. SCIENTIFIC REPORTS 5(2015). [Google Scholar]
  • Vijay, D., Akhtar, M.K. & Hess, W.R. Genetic and metabolic advances in the engineering of cyanobacteria. Curr Opin Biotechnol 59, 150-156 (2019). [CrossRef] [PubMed] [Google Scholar]
  • Vasudevan, R. et al. CyanoGate: A Modular Cloning Suite for Engineering Cyanobacteria Based on the Plant MoClo Syntax. Plant Physiol 180, 39-55 (2019). [CrossRef] [PubMed] [Google Scholar]
  • Wang, B., Eckert, C., Maness, P.C. & Yu, J. A Genetic Toolbox for Modulating the Expression of Heterologous Genes in the Cyanobacterium Synechocystis sp. PCC 6803. ACS Synth Biol 7, 276-286 (2018). [CrossRef] [PubMed] [Google Scholar]
  • Kelly, C.L., Taylor, G.M., Hitchcock, A., Torres-Méndez, A. & Heap, J.T. A Rhamnose-Inducible System for Precise and Temporal Control of Gene Expression in Cyanobacteria. ACS Synth Biol 7, 1056-1066 (2018). [CrossRef] [PubMed] [Google Scholar]
  • Koonin, E.V. & Makarova, K.S. Origins and evolution of CRISPR-Cas systems. Philos Trans R Soc Lond B Biol Sci 374, 20180087 (2019). [CrossRef] [PubMed] [Google Scholar]
  • Knott, G.J. & Doudna, J.A. CRISPR-Cas guides the future of genetic engineering. Science 361, 866-869 (2018). [CrossRef] [PubMed] [Google Scholar]
  • Barrangou, R. & Horvath, P. A decade of discovery: CRISPR functions and applications. Nat Microbiol 2, 17092 (2017). [CrossRef] [PubMed] [Google Scholar]
  • Shrivastav, M., De Haro, L.P. & Nickoloff, J.A. Regulation of DNA double-strand break repair pathway choice. Cell Res 18, 134-47 (2008). [Google Scholar]
  • Carroll, D. Genome engineering with targetable nucleases. Annu Rev Biochem 83, 409-39 (2014). [CrossRef] [PubMed] [Google Scholar]
  • Irion, U., Krauss, J. & Nüsslein-Volhard, C. Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development 141, 4827-30 (2014). [CrossRef] [PubMed] [Google Scholar]
  • Grissa, I., Vergnaud, G. & Pourcel, C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. NUCLEIC ACIDS RESEARCH 35, W52-W57 (2007). [CrossRef] [PubMed] [Google Scholar]
  • Rousseau, C., Gonnet, M., Le Romancer, M. & Nicolas, J. CRISPI: a CRISPR interactive database. BIOINFORMATICS 25, 3317-3318 (2009). [CrossRef] [PubMed] [Google Scholar]
  • Mojica, F.J., Díez-Villaseñor, C., García-Martínez, J. & Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60, 174-82 (2005). [CrossRef] [PubMed] [Google Scholar]
  • Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-12 (2007). [CrossRef] [PubMed] [Google Scholar]
  • Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. & Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology 169, 5429-5433 (1987). [CrossRef] [PubMed] [Google Scholar]
  • Barrangou, R. et al. CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. Science 315, 1709-1712 (2007). [CrossRef] [PubMed] [Google Scholar]
  • Wiedenheft, B., Sternberg, S.H. & Doudna, J.A. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482, 331-8 (2012). [CrossRef] [PubMed] [Google Scholar]
  • Bhaya, D., Davison, M. & Barrangou, R. CRISPR-Cas Systems in Bacteria and Archaea: Versatile Small RNAs for Adaptive Defense and Regulation. Annual Review of Genetics 45, 273-297 (2011). [CrossRef] [PubMed] [Google Scholar]
  • Makarova, K.S., Grishin, N.V., Shabalina, S.A., Wolf, Y.I. & Koonin, E.V. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1, 7 (2006). [CrossRef] [PubMed] [Google Scholar]
  • Grissa, I., Vergnaud, G. & Pourcel, C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8, 172 (2007). [Google Scholar]
  • Choi, K.R. & Lee, S.Y. CRISPR technologies for bacterial systems: Current achievements and future directions. Biotechnol Adv 34, 1180-1209 (2016). [Google Scholar]
  • Koonin, E.V., Makarova, K.S. & Zhang, F. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37, 67-78 (2017). [CrossRef] [PubMed] [Google Scholar]
  • Makarova, K.S. et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18, 67-83 (2020). [CrossRef] [PubMed] [Google Scholar]
  • Garneau, J.E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67-71 (2010). [CrossRef] [PubMed] [Google Scholar]
  • Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-21 (2012). [CrossRef] [PubMed] [Google Scholar]
  • Sonoda, E., Hochegger, H., Saberi, A., Taniguchi, Y. & Takeda, S. Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair (Amst) 5, 1021-9 (2006). [CrossRef] [PubMed] [Google Scholar]
  • Shuman, S. & Glickman, M.S. Bacterial DNA repair by non-homologous end joining. Nat Rev Microbiol 5, 852-61 (2007). [CrossRef] [PubMed] [Google Scholar]
  • Jiao, J. et al. Field detection of multiple RNA viruses/viroids in apple using a CRISPR/Cas12a-based visual assay. Plant Biotechnol J 19, 394-405 (2021). [CrossRef] [PubMed] [Google Scholar]
  • Khan, W.A., Barney, R.E. & Tsongalis, G.J. CRISPR-cas13 enzymology rapidly detects SARS-CoV-2 fragments in a clinical setting. Journal of Clinical Virology 145, 105019 (2021). [CrossRef] [PubMed] [Google Scholar]
  • Makarova, K.S. et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9, 467-77 (2011). [CrossRef] [PubMed] [Google Scholar]
  • Haft, D.H., Selengut, J., Mongodin, E.F. & Nelson, K.E. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 1, e60 (2005). [CrossRef] [PubMed] [Google Scholar]
  • Cai, F., Axen, S.D. & Kerfeld, C.A. Evidence for the widespread distribution of CRISPR-Cas system in the Phylum Cyanobacteria. RNA Biol 10, 687-93 (2013). [CrossRef] [PubMed] [Google Scholar]
  • Makarova, K.S. et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13, 722-36 (2015). [CrossRef] [PubMed] [Google Scholar]
  • Burstein, D. et al. New CRISPR-Cas systems from uncultivated microbes. Nature 542, 237-241 (2017). [CrossRef] [PubMed] [Google Scholar]
  • Yan, W.X. et al. Functionally diverse type V CRISPR-Cas systems. Science 363, 88-91 (2019). [CrossRef] [PubMed] [Google Scholar]
  • Makarova, K.S., Wolf, Y.I. & Koonin, E.V. Classification and Nomenclature of CRISPR-Cas Systems: Where from Here? Crispr j 1, 325-336 (2018). [CrossRef] [PubMed] [Google Scholar]
  • Hein, S., Scholz, I., Voß, B. & Hess, W.R. Adaptation and modification of three CRISPR loci in two closely related cyanobacteria. RNA Biol 10, 852-64 (2013). [CrossRef] [PubMed] [Google Scholar]
  • Yang, C., Lin, F., Li, Q., Li, T. & Zhao, J. Comparative genomics reveals diversified CRISPR-Cas systems of globally distributed Microcystis aeruginosa, a freshwater bloom-forming cyanobacterium. Front Microbiol 6, 394 (2015). [PubMed] [Google Scholar]
  • Jungblut, A.D. et al. Genomic diversity and CRISPR-Cas systems in the cyanobacterium Nostoc in the High Arctic. Environ Microbiol 23, 2955-2968 (2021). [CrossRef] [PubMed] [Google Scholar]
  • Cobos, M. et al. Genomic analysis and biochemical profiling of an unaxenic strain of Synechococcus sp. isolated from the Peruvian Amazon Basin region. Frontiers in genetics 13, 973324-973324 (2022). [CrossRef] [PubMed] [Google Scholar]
  • McKindles, K.M., McKay, R.M. & Bullerjahn, G.S. Genomic comparison of Planktothrix agardhii isolates from a Lake Erie embayment. PloS one 17, e0273454-e0273454 (2022). [CrossRef] [PubMed] [Google Scholar]
  • Makarova, K.S., Wolf, Y.I. & Koonin, E.V. Classification and Nomenclature of CRISPR-Cas Systems: Where from Here? The CRISPR journal 1, 325-336 (2018). [CrossRef] [PubMed] [Google Scholar]
  • Pickar-Oliver, A. & Gersbach, C.A. The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol 20, 490-507 (2019). [CrossRef] [PubMed] [Google Scholar]
  • Hidalgo-Cantabrana, C., O'Flaherty, S. & Barrangou, R. CRISPR-based engineering of next-generation lactic acid bacteria. Curr Opin Microbiol 37, 79-87 (2017). [CrossRef] [PubMed] [Google Scholar]
  • Zheng, Y. et al. Characterization and repurposing of the endogenous Type I-F CRISPR–Cas system of Zymomonas mobilis for genome engineering. Nucleic Acids Research 47, 11461-11475 (2019). [CrossRef] [PubMed] [Google Scholar]
  • Wendt, K.E., Ungerer, J., Cobb, R.E., Zhao, H. & Pakrasi, H.B. CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973. Microb Cell Fact 15, 115 (2016). [CrossRef] [PubMed] [Google Scholar]
  • Li, H. et al. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metab Eng 38, 293-302 (2016). [CrossRef] [PubMed] [Google Scholar]
  • Xiao, Y. et al. Developing a Cas9-based tool to engineer native plasmids in Synechocystis sp. PCC 6803. Biotechnol Bioeng 115, 2305-2314 (2018). [Google Scholar]
  • Racharaks, R., Arnold, W. & Peccia, J. Development of CRISPR-Cas9 knock-in tools for free fatty acid production using the fast-growing cyanobacterial strain Synechococcus elongatus UTEX 2973. J Microbiol Methods 189, 106315 (2021). [CrossRef] [PubMed] [Google Scholar]
  • Cengic, I., Cañadas, I.C., Minton, N.P. & Hudson, E.P. Inducible CRISPR/Cas9 Allows for Multiplexed and Rapidly Segregated Single-Target Genome Editing in Synechocystis Sp. PCC 6803. ACS Synth Biol 11, 3100-3113 (2022). [CrossRef] [PubMed] [Google Scholar]
  • Ungerer, J. & Pakrasi, H.B. Cpf1 Is A Versatile Tool for CRISPR Genome Editing Across Diverse Species of Cyanobacteria. Sci Rep 6, 39681 (2016). [CrossRef] [PubMed] [Google Scholar]
  • Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-71 (2015). [Google Scholar]
  • Meliawati, M., Schilling, C. & Schmid, J. Recent advances of Cas12a applications in bacteria. Appl Microbiol Biotechnol 105, 2981-2990 (2021). [CrossRef] [PubMed] [Google Scholar]
  • Niu, T.C. et al. Expanding the Potential of CRISPR-Cpf1-Based Genome Editing Technology in the Cyanobacterium Anabaena PCC 7120. ACS Synth Biol 8, 170-180 (2019). [CrossRef] [PubMed] [Google Scholar]
  • Baldanta, S., Guevara, G. & Navarro-Llorens, J.M. SEVA-Cpf1, a CRISPR-Cas12a vector for genome editing in cyanobacteria. Microb Cell Fact 21, 103 (2022). [CrossRef] [PubMed] [Google Scholar]
  • Lin, P.C., Zhang, F. & Pakrasi, H.B. Enhanced limonene production in a fast-growing cyanobacterium through combinatorial metabolic engineering. Metab Eng Commun 12, e00164 (2021). [CrossRef] [PubMed] [Google Scholar]
  • Sengupta, A. et al. Photosynthetic Co-Production of Succinate and Ethylene in A Fast-Growing Cyanobacterium, Synechococcus elongatus PCC 11801. Metabolites 10(2020). [Google Scholar]
  • Gao, L. et al. Engineered Cpf1 variants with altered PAM specificities. Nat Biotechnol 35, 789-792 (2017). [CrossRef] [PubMed] [Google Scholar]
  • Zhang, Y.T. et al. Application of the CRISPR/Cas system for genome editing in microalgae. Appl Microbiol Biotechnol 103, 3239-3248 (2019). [CrossRef] [PubMed] [Google Scholar]
  • Kleinstiver, B.P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481-5 (2015). [CrossRef] [PubMed] [Google Scholar]
  • Klompe, S.E., Vo, P.L.H., Halpin-Healy, T.S. & Sternberg, S.H. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature 571, 219-225 (2019). [CrossRef] [PubMed] [Google Scholar]
  • Strecker, J. et al. RNA-guided DNA insertion with CRISPR-associated transposases. Science 365, 48-53 (2019). [NASA ADS] [CrossRef] [Google Scholar]
  • Hsieh, S.C. & Peters, J.E. Discovery and characterization of novel type I-D CRISPR-guided transposons identified among diverse Tn7-like elements in cyanobacteria. Nucleic Acids Res 51, 765-782 (2023). [CrossRef] [PubMed] [Google Scholar]
  • Xiao, R. et al. Structural basis of target DNA recognition by CRISPR-Cas12k for RNA-guided DNA transposition. Mol Cell 81, 4457-4466.e5 (2021). [CrossRef] [PubMed] [Google Scholar]
  • Arévalo, S. et al. Towards genome-engineering in complex cyanobacterial communities: RNA-guided transposition in Anabaena</i&gt. (bioRxiv, 2022). [Google Scholar]
  • Peters, J.E. & Craig, N.L. Tn7 recognizes transposition target structures associated with DNA replication using the DNA-binding protein TnsE. Genes & development 15, 737-747 (2001). [CrossRef] [PubMed] [Google Scholar]
  • Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A. & Liu, D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-4 (2016). [CrossRef] [PubMed] [Google Scholar]
  • Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353(2016). [Google Scholar]
  • Gaudelli, N.M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464-471 (2017). [CrossRef] [PubMed] [Google Scholar]
  • Kurt, I.C. et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat Biotechnol 39, 41-46 (2021). [CrossRef] [PubMed] [Google Scholar]
  • Zhao, D. et al. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat Biotechnol 39, 35-40 (2021). [CrossRef] [PubMed] [Google Scholar]
  • Molla, K.A. & Yang, Y. CRISPR/Cas-Mediated Base Editing: Technical Considerations and Practical Applications. Trends Biotechnol 37, 1121-1142 (2019). [CrossRef] [PubMed] [Google Scholar]
  • Gu, S., Bodai, Z., Cowan, Q.T. & Komor, A.C. Base Editors: Expanding the Types of DNA Damage Products Harnessed for Genome Editing. Gene Genome Ed 1(2021). [PubMed] [Google Scholar]
  • Xia, P.F. et al. Reprogramming Acetogenic Bacteria with CRISPR-Targeted Base Editing via Deamination. ACS Synth Biol 9, 2162-2171 (2020). [CrossRef] [PubMed] [Google Scholar]
  • Rodrigues, S.D. et al. Efficient CRISPR-mediated base editing in Agrobacterium spp. Proc Natl Acad Sci U S A 118(2021). [PubMed] [Google Scholar]
  • Tong, Y. et al. Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST. Proc Natl Acad Sci U S A 116, 20366-20375 (2019). [CrossRef] [PubMed] [Google Scholar]
  • Volke, D.C., Martino, R.A., Kozaeva, E., Smania, A.M. & Nikel, P.I. Modular (de)construction of complex bacterial phenotypes by CRISPR/nCas9-assisted, multiplex cytidine base-editing. Nat Commun 13, 3026 (2022). [CrossRef] [PubMed] [Google Scholar]
  • Wang, S.Y., Li, X., Wang, S.G. & Xia, P.F. Base editing for reprogramming cyanobacterium Synechococcus elongatus. Metab Eng 75, 91-99 (2023). [CrossRef] [PubMed] [Google Scholar]
  • Lee, M., Heo, Y.B. & Woo, H.M. Cytosine base editing in cyanobacteria by repressing archaic Type IV uracil-DNA glycosylase. Plant J (2022). [Google Scholar]
  • Dong, C., Fontana, J., Patel, A., Carothers, J.M. & Zalatan, J.G. Synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria. Nat Commun 9, 2489 (2018). [CrossRef] [PubMed] [Google Scholar]
  • Qi, L.S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173-83 (2013). [Google Scholar]
  • Kim, S.K. et al. Efficient Transcriptional Gene Repression by Type V-A CRISPR-Cpf1 from Eubacterium eligens. ACS Synth Biol 6, 1273-1282 (2017). [CrossRef] [PubMed] [Google Scholar]
  • Martella, A. et al. Systematic Evaluation of CRISPRa and CRISPRi Modalities Enables Development of a Multiplexed, Orthogonal Gene Activation and Repression System. ACS Synth Biol 8, 1998-2006 (2019). [CrossRef] [PubMed] [Google Scholar]
  • Yao, L., Cengic, I., Anfelt, J. & Hudson, E.P. Multiple Gene Repression in Cyanobacteria Using CRISPRi. ACS Synth Biol 5, 207-12 (2016). [CrossRef] [PubMed] [Google Scholar]
  • Dietsch, M., Behle, A., Westhoff, P. & Axmann, I.M. Metabolic engineering of Synechocystis sp. PCC 6803 for the photoproduction of the sesquiterpene valencene. Metab Eng Commun 13, e00178 (2021). [CrossRef] [PubMed] [Google Scholar]
  • Lai, M.J., Tsai, J.C. & Lan, E.I. CRISPRi-enhanced direct photosynthetic conversion of carbon dioxide to succinic acid by metabolically engineered cyanobacteria. Bioresour Technol 366, 128131 (2022). [Google Scholar]
  • Shabestary, K. et al. Cycling between growth and production phases increases cyanobacteria bioproduction of lactate. Metabolic Engineering 68, 131-141 (2021). [CrossRef] [PubMed] [Google Scholar]
  • Kalwani, P., Rath, D. & Ballal, A. Loss of 2-Cys-Prx affects cellular ultrastructure, disturbs redox poise and impairs photosynthesis in cyanobacteria. Plant Cell Environ 45, 2972-2986 (2022). [CrossRef] [PubMed] [Google Scholar]
  • Behle, A. et al. Manipulation of topoisomerase expression inhibits cell division but not growth and reveals a distinctive promoter structure in Synechocystis. Nucleic Acids Res 50, 12790-12808 (2022). [CrossRef] [PubMed] [Google Scholar]
  • Zhang, X. et al. Multiplex gene regulation by CRISPR-ddCpf1. Cell Discov 3, 17018 (2017). [Google Scholar]
  • Choi, S.Y. & Woo, H.M. CRISPRi-dCas12a: A dCas12a-Mediated CRISPR Interference for Repression of Multiple Genes and Metabolic Engineering in Cyanobacteria. ACS Synth Biol 9, 2351-2361 (2020). [CrossRef] [PubMed] [Google Scholar]
  • Kaczmarzyk, D., Cengic, I., Yao, L. & Hudson, E.P. Diversion of the long-chain acyl-ACP pool in Synechocystis to fatty alcohols through CRISPRi repression of the essential phosphate acyltransferase PlsX. Metab Eng 45, 59-66 (2018). [CrossRef] [PubMed] [Google Scholar]
  • Yao, L. et al. Pooled CRISPRi screening of the cyanobacterium Synechocystis sp PCC 6803 for enhanced industrial phenotypes. Nat Commun 11, 1666 (2020). [CrossRef] [PubMed] [Google Scholar]
  • Li, H. et al. Combinatorial CRISPR Interference Library for Enhancing 2,3-BDO Production and Elucidating Key Genes in Cyanobacteria. Front Bioeng Biotechnol 10, 913820 (2022). [CrossRef] [PubMed] [Google Scholar]
  • Liu, D., Johnson, V.M. & Pakrasi, H.B. A Reversibly Induced CRISPRi System Targeting Photosystem II in the Cyanobacterium Synechocystis sp. PCC 6803. ACS Synth Biol 9, 1441-1449 (2020). [CrossRef] [PubMed] [Google Scholar]
  • Knoot, C.J., Biswas, S. & Pakrasi, H.B. Tunable Repression of Key Photosynthetic Processes Using Cas12a CRISPR Interference in the Fast-Growing Cyanobacterium Synechococcus sp. UTEX 2973. ACS Synth Biol 9, 132-143 (2020). [CrossRef] [PubMed] [Google Scholar]
  • Behler, J., Vijay, D., Hess, W.R. & Akhtar, M.K. CRISPR-Based Technologies for Metabolic Engineering in Cyanobacteria. Trends Biotechnol 36, 996-1010 (2018). [CrossRef] [PubMed] [Google Scholar]
  • Huang, H.-H. & Lindblad, P. Wide-dynamic-range promoters engineered for cyanobacteria. Journal of Biological Engineering 7, 10 (2013). [CrossRef] [PubMed] [Google Scholar]
  • Anzalone, A.V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157 (2019). [CrossRef] [PubMed] [Google Scholar]
  • Chiang, T.W., le Sage, C., Larrieu, D., Demir, M. & Jackson, S.P. CRISPR-Cas9(D10A) nickase-based genotypic and phenotypic screening to enhance genome editing. Sci Rep 6, 24356 (2016). [CrossRef] [PubMed] [Google Scholar]
  • Leal, A.F. & Alméciga-Díaz, C.J. Efficient CRISPR/Cas9 nickase-mediated genome editing in an in vitro model of mucopolysaccharidosis IVA. Gene Ther 30, 107-114 (2023). [CrossRef] [PubMed] [Google Scholar]
  • Tong, Y., Jørgensen, T.S., Whitford, C.M., Weber, T. & Lee, S.Y. A versatile genetic engineering toolkit for E. coli based on CRISPR-prime editing. Nat Commun 12, 5206 (2021). [CrossRef] [PubMed] [Google Scholar]
  • Liu, J.J. et al. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566, 218-223 (2019). [CrossRef] [PubMed] [Google Scholar]
  • Tsuchida, C.A. et al. Chimeric CRISPR-CasX enzymes and guide RNAs for improved genome editing activity. Mol Cell 82, 1199-1209.e6 (2022). [CrossRef] [PubMed] [Google Scholar]
  • Zhang, L. et al. Systematic in vitro profiling of off-target affinity, cleavage and efficiency for CRISPR enzymes. Nucleic Acids Res 48, 5037-5053 (2020). [CrossRef] [PubMed] [Google Scholar]
  • Naduthodi, M.I.S., Barbosa, M.J. & van der Oost, J. Progress of CRISPR-Cas Based Genome Editing in Photosynthetic Microbes. Biotechnol J 13, e1700591 (2018). [Google Scholar]
  • Moon, J., Henke, L., Merz, N. & Basen, M. A thermostable mannitol-1-phosphate dehydrogenase is required in mannitol metabolism of the thermophilic acetogenic bacterium Thermoanaerobacter kivui. Environ Microbiol 21, 3728-3736 (2019). [CrossRef] [PubMed] [Google Scholar]
  • Fink, C. et al. A Shuttle-Vector System Allows Heterologous Gene Expression in the Thermophilic Methanogen Methanothermobacter thermautotrophicus ΔH. mBio 12, e0276621 (2021). [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.