Open Access
BIO Web Conf.
Volume 61, 2023
6th International Conference on Frontiers of Biological Sciences and Engineering (FBSE 2023)
Article Number 01014
Number of page(s) 5
Published online 21 June 2023
  • Balint, B., et al., Dystonia. Nat Rev Dis Primers, 2018. 4(1): p. 25. [CrossRef] [PubMed] [Google Scholar]
  • Biering-Sorensen, F., J.B. Nielsen, and K. Klinge, Spasticity-assessment: a review. Spinal Cord, 2006. 44(12): p. 708-22. [CrossRef] [PubMed] [Google Scholar]
  • Oh, S.L., et al., A deep learning approach for Parkinson’s disease diagnosis from EEG signals. Neural Computing and Applications, 2018. 32(15): p. 10927-10933. [Google Scholar]
  • Cho, K., et al. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. 2014. arXiv:1406.1078 DOI: 10.48550/arXiv.1406.1078. [Google Scholar]
  • Cristian Borges Gamboa, J. Deep Learning for Time-Series Analysis. 2017. arXiv:1701.01887 DOI: 10.48550/arXiv.1701.01887. [Google Scholar]
  • Kiranyaz, S., et al. 1-D Convolutional Neural Networks for Signal Processing Applications. in ICASSP 2019 -2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2019. [Google Scholar]
  • Lawhern, V.J., et al., EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces. J Neural Eng, 2018. 15(5): p. 056013. [CrossRef] [Google Scholar]
  • Schirrmeister, R.T., et al., Deep learning with convolutional neural networks for EEG decoding and visualization. Hum Brain Mapp, 2017. 38(11): p. 5391-5420. [CrossRef] [PubMed] [Google Scholar]
  • Xia, P., J. Hu, and Y. Peng, EMG-Based Estimation of Limb Movement Using Deep Learning With Recurrent Convolutional Neural Networks. Artif Organs, 2018. 42(5): p. E67-E77. [CrossRef] [PubMed] [Google Scholar]
  • Xiong, D., et al., Deep Learning for EMG-based Human-Machine Interaction: A Review. IEEE/CAA Journal of Automatica Sinica, 2021. 8(3): p. 512-533. [CrossRef] [Google Scholar]
  • Vinyals, O., et al. Matching Networks for One Shot Learning. 2016. arXiv:1606.04080 DOI: 10.48550/arXiv.1606.04080. [Google Scholar]
  • Ren, M., et al. Meta-Learning for Semi-Supervised Few-Shot Classification. 2018. arXiv:1803.00676 DOI: 10.48550/arXiv.1803.00676. [Google Scholar]
  • Corballis, M.C., Left brain, right brain: facts and fantasies. PLoS Biol, 2014. 12(1): p. e1001767. [CrossRef] [PubMed] [Google Scholar]
  • Fisher, R.A., Statistical Methods for Research Workers. 1992, Springer New York. p. 66-70. [Google Scholar]
  • Rumelhart, D.E., G.E. Hinton, and R.J. Williams, Learning representations by back-propagating errors. Nature, 1986. 323: p. 533-536. [CrossRef] [Google Scholar]
  • Hochreiter, S. and J. Schmidhuber, Long Short-Term Memory. Neural Computation, 1997. 9(8): p. 1735-1780. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.