Open Access
Issue
BIO Web Conf.
Volume 61, 2023
6th International Conference on Frontiers of Biological Sciences and Engineering (FBSE 2023)
Article Number 01017
Number of page(s) 4
DOI https://doi.org/10.1051/bioconf/20236101017
Published online 21 June 2023
  • Wang J, Chen C. The current status of heavy metal pollution and treatment technology development in China[J]. Environmental Technology Reviews, 2015, 4(1): 39-53. [CrossRef] [Google Scholar]
  • Xie H, Yang X, Xu J, et al. Heavy metals pollution and potential ecological health risk assessment in the Yangtze River reaches[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109489. [CrossRef] [Google Scholar]
  • Rahman Z, Singh V P. Assessment of heavy metal contamination and Hg-resistant bacteria in surface water from different regions of Delhi, India[J]. Saudi Journal of Biological Sciences, 2018, 25(8): 1687-1695. [CrossRef] [PubMed] [Google Scholar]
  • Bayat Z, Hassanshahian M, Hesni M A. Study the symbiotic crude oil-degrading bacteria in the mussel Mactra stultorum collected from the Persian Gulf[J]. Marine pollution bulletin, 2016, 105(1): 120-124. [CrossRef] [PubMed] [Google Scholar]
  • Han Q, Liu Y, Feng X, et al. Pollution effect assessment of industrial activities on potentially toxic metal distribution in windowsill dust and surface soil in central China[J]. Science of the Total Environment, 2021, 759: 144023. [CrossRef] [Google Scholar]
  • Amos H M, Jacob D J, Holmes C D, et al. Gas-particle partitioning of atmospheric Hg (II) and its effect on global mercury deposition[J]. Atmospheric Chemistry and Physics, 2012, 12(1): 591-603. [CrossRef] [Google Scholar]
  • Xia J, Wang J, Zhang L, et al. Migration and transformation of soil mercury in a karst region of southwest China: Implications for groundwater contamination[J]. Water Research, 2022, 226: 119271. [Google Scholar]
  • Wei Q, Yan J, Chen Y, et al. Cell surface display of MerR on Saccharomyces cerevisiae for biosorption of mercury[J]. Molecular biotechnology, 2018, 60: 12-20. [CrossRef] [PubMed] [Google Scholar]
  • Tikoalu A D, Lundquist N A, Chalker J M. Mercury sorbents made by inverse vulcanization of sustainable triglycerides: the plant oil structure influences the rate of mercury removal from water[J]. Advanced Sustainable Systems, 2020, 4(3): 1900111. [CrossRef] [Google Scholar]
  • Negri M C, Hinchman R R, Gatliff E G. Phytoremediation: using green plants to clean up contaminate soil, groundwater, and wastewater[R]. Argonne National Lab. (ANL), Argonne, IL (United States), 1996.Web. [Google Scholar]
  • Pratush A, Kumar A, Hu Z. Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: a review[J]. International Microbiology, 2018, 21: 97-106. [CrossRef] [PubMed] [Google Scholar]
  • Wagner-Döbler I. Pilot plant for bioremediation of mercury-containing industrial wastewater[J]. Applied microbiology and biotechnology, 2003, 62: 124-133. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.