Open Access
BIO Web Conf.
Volume 61, 2023
6th International Conference on Frontiers of Biological Sciences and Engineering (FBSE 2023)
Article Number 01030
Number of page(s) 4
Published online 21 June 2023
  • Chang H K, Ishikawa F N, Zhang R, et al. Rapid, label-free, electrical whole blood bioassay based on nanobiosensor systems. [J]. Acs Nano, 2011, 5(12):9883-9891. [Google Scholar]
  • Meng F, Liang W, Sun H, et al. A Peptide-Based Electrochemical Biosensor for Facile Measurement of Whole-Blood Heparin[J]. Chemelectrochem, 2017, 4(3):472-475. [CrossRef] [Google Scholar]
  • Nichols S P, Koh A, Storm W L, et al. Biocompatible Materials for Continuous Glucose Monitoring Devices[J]. Chemical Reviews, 2013, 113(4):2528-2549. [CrossRef] [PubMed] [Google Scholar]
  • Mailloux S, Katz E. Role of biomolecular logic systems in biosensors and bioactuators [J]. Optical engineering, 2014, 53(9):7-8. [Google Scholar]
  • Joshi N, Wang X, Montgomery L, et al. Novel approaches to biosensors for detection of arsenic in drinking water[J]. Desalination, 2009, 248(1-3):517-523. [CrossRef] [Google Scholar]
  • Sun C, Miao J, Yan J, et al. Applications of antibiofouling PEG-coating in electrochemical biosensors for determination of glucose in whole blood[J]. Electrochimica Acta, 2013, 89(12):549-554. [CrossRef] [Google Scholar]
  • Jiang L, Jiang X, Zhang R, et al. MXene-Enabled Electrochemical Microfluidic Biosensor: Applications toward Multicomponent Continuous Monitoring in Whole Blood[J]. Advanced Functional Materials, 2019, 29(6):1807326. [CrossRef] [Google Scholar]
  • Sun C, Wang X, Yang X, et al. A label-free electrochemical aptasensor for sensitive thrombin detection in whole blood[J]. Electrochimica Acta, 2013, 106(10):327-332. [CrossRef] [Google Scholar]
  • Mahshid S S, Camire S, Ricci F, et al. A Highly Selective Electrochemical DNA-Based Sensor That Employs Steric Hindrance Effects to Detect Proteins Directly in Whole Blood[J]. Journal of the American Chemical Society, 2015, 137(50):15596-9. [CrossRef] [PubMed] [Google Scholar]
  • Sarangadharan I, Pulikkathodi A K, Chen P H, et al. Design Considerations of Liquid Gated High Field Modulated FET Biosensor for Enhanced Sensing Characteristics[J]. ECS Transactions, 2019, 89(6):41-48. [CrossRef] [Google Scholar]
  • Belushkin A, Yesilkoy F, JJ González Ópez, et al. Optical Biosensors: Rapid and Digital Detection of Inflammatory Biomarkers Enabled by a Novel Portable Nanoplasmonic Imager (Small 3/2020) [J]. Small, 2020, 16(3):2070014. [CrossRef] [Google Scholar]
  • Gomes N O, Carrilho E, Machado S, et al. Bacterial cellulose-based electrochemical sensing platform: A smart material for miniaturized biosensors[J]. Electrochimica Acta, 2020, 349(8):136341. [CrossRef] [Google Scholar]
  • Wu L, Lin Z, Jiang L, et al. Long-Range Surface Plasmon With Graphene for Enhancing the Sensitivity and Detection Accuracy of Biosensor[J]. IEEE Photonics Journal, 2016, 8(2):1-9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.