Open Access
Issue |
BIO Web Conf.
Volume 69, 2023
The 2nd International Conference on Agriculture, Food, and Environment (2nd ICAFE 2023)
|
|
---|---|---|
Article Number | 03020 | |
Number of page(s) | 9 | |
Section | Food Science and Technology | |
DOI | https://doi.org/10.1051/bioconf/20236903020 | |
Published online | 16 October 2023 |
- WHO. (2023). Diabetes. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/diabetes. [Accessed: 18 June 2023]. [Google Scholar]
- M. J. Meneses, B. M. Silva, M. Sousa, R. Sá, P. F. Oliveira, and M. G. Alves, “Antidiabetic Drugs: Mechanisms of Action and Potential Outcomes on Cellular Metabolism,” Current Pharmaceutical Design, vol. 21, pp. 3606–3620, 2015. [CrossRef] [PubMed] [Google Scholar]
- W. M. D. Dean, “Acarbose: Anti-diabetic, Cardio-protective, Weight loss, and Potential Anti-aging agent,” Magazine Life Enhancement, February 2017. [Google Scholar]
- E. Di Stefano, T. Oliviero, and C. C. Udenigwe, “Functional significance and structure-activity relationship of food-derived a-glucosidase inhibitors,” Current Opinion in Food Science, vol. 20, pp. 7–12, 2018. [CrossRef] [Google Scholar]
- M. A. Ibrahim, M. J. Bester, A. W. H. Neitz, and A. R. M. Gaspar, “Structural properties of bioactive peptides with a-glucosidase inhibitory activity,” Chem Biol Drug Des., vol. 91, no. 2, pp. 370–379, 2018. [CrossRef] [PubMed] [Google Scholar]
- S. P. Botha dan E. J. Bigwood, “Amino-acid content of raw and heat-sterilized cow’s milk,” Nutr, vol. 13, pp. 385–389, 1959. [Google Scholar]
- A. Vander, J. Sherman, dan D. Luciano, Human Physiology: The Mechanism of Body, ed. ke-8. Boston: The McGraw-Hill Companies, 2001, hal. 556–580. [Google Scholar]
- A. H. M. Lin, B. H. Lee, dan W. J. Chang, “Small intestine mucosal a-glucosidase: A missing feature of in vitro starch digestibility,” Food Hydrocolloids, vol. 53, hal. 163–171, 2016. [CrossRef] [Google Scholar]
- S. Chiba, “Review: molecular mechanism in a-glucosidase and glucoamylase,” Biosci. Biotech. Biochem., vol. 61, no. 8, hal. 1233–1239, 1997. [CrossRef] [PubMed] [Google Scholar]
- B. Konrad, D. B. Anna, S. Marek, P. Marta, Z. Aleksandra, dan C. Jo’zefa, “The Evaluation of Dipeptidyl Peptidase (DPP)-IV, a-Glucosidase, and Angiotensin Converting Enzyme (ACE) Inhibitory Activities of Whey Proteins Hydrolyzed with Serine Protease Isolated from Asian Pumpkin (Cucurbita ficifolia),” Int JPept Res Ther, vol. 20, pp. 483–491, 2014. [CrossRef] [PubMed] [Google Scholar]
- L. Muganga, X. Liu, F. Tian, J. Zhao, H. Zhang, dan W. Chen, “Screening for Lactic Acid Bacteria Based on Antihyperglycaemic and Probiotic Potential and Application in Synbiotic Set Yoghurt,” J. Funct. Foods, vol. 16, pp. 125–136, 2015. [CrossRef] [Google Scholar]
- E. Puspitojati, M. N. Cahyanto, Y. Marsono, dan R. Indrati, “Changes in Amino Acid Composition During Fermentation and Its Effects on the Inhibitory Activity of Angiotensin-I-Converting Enzyme of Jack Bean Tempe Following In Vitro Gastrointestinal Digestion,” J. Food Nutr. Res., vol. 58, pp. 319–327, 2019. [Google Scholar]
- L. F. Paludetti, K. Jordan, A. L. Kelly, dan D. Gleeson, “Evaluating the Effect of Storage Conditions on Milk Microbiological Quality and Composition,” Irish J. Agric. Food Res., vol. 57, pp. 52–62, 2018. [CrossRef] [Google Scholar]
- B. Liu, K.T. Kongstad, S. Wiese, A.K. Jäger, dan D. Staerk, “Edible Seaweed as Future Functional Food: Identification of a-Glucosidase Inhibitors by Combined Use of High-Resolution a-Glucosidase Inhibition Profiling and HPLC-HRMS-SPE-NMR,” Food Chem., vol. 203, pp. 16–22, 2016. [CrossRef] [Google Scholar]
- Z. Zeng, J. Luo, F. Zuo, Y. Zhang, H. Ma, dan S. Chen, “Screening for Potential Novel Probiotic Lactobacillus Strains Based on High Dipeptidyl Peptidase IV and a-Glucosidase Inhibitory Activity,” J. Funct. Foods, vol. 20, pp. 486–495, 2016. [CrossRef] [Google Scholar]
- L. Ramchandran dan N. P. Shah, “Proteolytic Profiles and Angiotensin-I Converting Enzyme and a-Glucosidase Inhibitory Activities of Selected Lactic Acid Bacteria,” J. Food Sci., vol. 73, no. 2, 2008. [Google Scholar]
- S. N. Casarotti dan A. L. B. Penna, “Acidification Profile, Probiotic In Vitro Gastrointestinal Tolerance and Viability in Fermented Milk with Fruit Flours,” Int. Dairy J., vol. 41, pp. 1–6, 2015. [CrossRef] [Google Scholar]
- P. Leverrier, D. Dimova, V. Pichereau, Y. Auffray, P. Boyaval, dan G. Jan, “Susceptibility and Adaptive Response to Bile Salts in Propionibacterium freudenreichii: Physiological and Proteomic Analysis,” Appl. Environ. Microbiol., vol. 69, no. 7, pp. 3809–3818, 2003. [CrossRef] [PubMed] [Google Scholar]
- Y. Zhang, N. Wang, W. Wang, J. Wanga, Z. Zhua, dan X. Li, “Molecular Mechanisms of Novel Peptides from Silkworm Pupae that Inhibit a-Glucosidase,” Peptides, vol. 76, pp. 45–50, 2016. [CrossRef] [PubMed] [Google Scholar]
- Z. Yu, Y. Yin, W. Zhao, J. Liu, dan F. Chen, “Anti-diabetic Activity Peptides from Albumin Against a-Glucosidase and a-Amylase,” Food Chem., vol. 135, pp. 2078–2085, 2012. [CrossRef] [Google Scholar]
- U. Schillinger, W. H. Holzapfel, dan K. J. Björkroth, “Food Spoilage Microorganisms: Lactic Acid Bacteria,” Institute of Hygiene and Toxicology, Federal Research Centre for Nutrition and Food: Karlsruhe, Germany, pp. 541–578, 2006. [Google Scholar]
- Y. Liu dan M. Pischetsrieder, “Identification and Relative Quantification of Bioactive Peptides Sequentially Released During Simulated Gastrointestinal Digestion of Commercial Kefir,” J. Agric. Food Chem., vol. 65, pp. 1865–1873, 2017. [CrossRef] [PubMed] [Google Scholar]
- G. Aiello, S. Ferruzza, G. Ranaldi, Y. Sambuy, A. Arnoldi, G. Vistoli, dan C. Lammi, “Behavior of Three Hypocholesterolemic Peptides from Soy Protein in an Intestinal Model Based on Differentiated Caco-2 Cell,” J. Funct. Foods, vol. 45, pp. 363–370, 2018. [CrossRef] [Google Scholar]
- T. Ahmed, X. Sun, dan C. C. Udenigwe, “Role of Structural Properties of Bioactive Peptides in Their Stability During Simulated Gastrointestinal Digestion: A Systematic Review,” Trends Food Sci. Technol., vol. 120, pp. 265–273, 2022. [CrossRef] [Google Scholar]
- E. S. Rahayu, N. N. Aini, Mariyatun, dan T. Utami, “Current Taxonomic Name of Indigenous Probiotic Strains,” dipresentasikan dalam 6th Int. Conf. Indonesian Soc. Lactic Acid Bacteria Gut Microbiota, 2021. [Google Scholar]
- V. K. Bajpai, J. H. Han, G. J. Nam, R. Majumder, C. Park, J. Lim, W. K. Paek, I. A. Rather, dan Y. H. Park, “Characterization and Pharmacological Potential of Lactobacillus sakei 1I1 Isolated from Fresh Water Fish Zacco koreanus,” DARU J. Pharm. Sci., vol. 24, no. 1, p. 8, 2016. [CrossRef] [Google Scholar]
- H. Panwar, D. Calderwood, I. R. Grant, S. Grover, dan B. D. Green, “Lactobacillus Strains Isolated from Infant Faeces Possess Potent Inhibitory Activity Against Intestinal Alpha and Beta Glucosidases Suggesting Anti-Diabetic Potential,” Eur. J. Nutr., vol. 53, pp. 1465–1474, 2014. [CrossRef] [PubMed] [Google Scholar]
- L. Ramchandran dan N. P. Shah, “Effect of Exopolysaccharides and Inulin on the Proteolytic, Angiotensin-I-Converting Enzyme- and a-Glucosidase-Inhibitory Activities as well as on Textural and Rheological Properties of Low-Fat Yogurt During Refrigerated Storage,” Dairy Sci. Technol., vol. 89, pp. 583–600, 2009. [CrossRef] [EDP Sciences] [Google Scholar]
- P. Chen, Q. Zhang, H. Dang, X. Liu, F. Tian, J. Zhao, Y. Chen, H. Zhang, dan W. Chen, “Screening for Potential New Probiotic Based on Probiotic Properties and a-Glucosidase Inhibitory Activity,” Food Control, vol. 35, pp. 65–72, 2014. [CrossRef] [Google Scholar]
- K. Sasikumar, D. K. Vaikkath, L. Devendra, dan K. M. Nampoothiri, “An Exopolysaccharide (EPS) from a Lactobacillus plantarum BR2 with Potential Benefits for Making Functional Foods,” Bioresour. Technol., vol. 241, pp. 1152–1156, 2017. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.