Open Access
Issue |
BIO Web Conf.
Volume 69, 2023
The 2nd International Conference on Agriculture, Food, and Environment (2nd ICAFE 2023)
|
|
---|---|---|
Article Number | 04011 | |
Number of page(s) | 11 | |
Section | Agricultural Environment, Ecology and Resources | |
DOI | https://doi.org/10.1051/bioconf/20236904011 | |
Published online | 16 October 2023 |
- K. Yonebayashi et al., “Chemical alterations of tropical peat soils determined by Waksman's proximate analysis and properties of humic acids,” Soil Sci. Plant Nutr., vol. 40, no. 3, pp. 435-444, 1994. DOI: 10.1080/00380768.1994.10413321. [CrossRef] [Google Scholar]
- N. V. Agafonova et al., “A novel Delftia plant symbiont capable of autotrophic methylotrophy,” Microbiol., vol. 86, no. 1, pp. 96-105, 2017. DOI: 10.1134/S0026261717010039. [CrossRef] [Google Scholar]
- J. D. Harindintwali, J. Zhou, and X. Yu, “Lignocellulosic crop residue composting by cellulolytic nitrogen-fixing bacteria: A novel tool for environmental sustainability,” Sci. Total Environ., vol. 715, p. 136912, 2020. DOI: 10.1016/j.scitotenv.2020.136912. [CrossRef] [Google Scholar]
- R. Nuntavun, S. Jutaporn, and S. Pornrapee, “Microbial strategy for composting,” Malays. J. Microbiol., vol. 10, no. 3, pp. 174-178, 2014. [Google Scholar]
- A. Tang, A. O. Haruna, and N. M. A. Majid, “Potential PGPR properties of cellulolytic, nitrogen-fixing, and phosphate-solubilizing bacteria of a rehabilitated tropical forest soil,” Microorganisms, vol. 8, pp. 1-22, 2020. DOI: 10.1101/351916. [Google Scholar]
- W. S. Wong, S. N. Tan, L. Ge, and J. W. H. Yong, “The Importance of Phytohormones and Microbes in Biofertilizers,” in Bacterial Metabolites in Sustainable Agroecosystem, Sustainable Development and Biodiversity 12, no. February 2017, D. K. Maheshwari, Ed. Singapore: Springer International Publishing Switzerland, 2015, pp. 105-158. [CrossRef] [Google Scholar]
- M. C. Camara et al., “Current advances in gibberellic acid (GA3) production, patented technologies and potential applications,” Planta, no. August, 2018. DOI: 10.1007/s00425-018-2959-x. [Google Scholar]
- D. N. Susilowati, I. M. Sudiana, N. R. Mubarik, and A. Suwanto, “Species and Functional Diversity of Rhizobacteria of Rice Plant in the Coastal Soils of Indonesia,” Indones. J. Agric. Sci., vol. 16, no. 1, p. 39, 2015. DOI: 10.21082/ijas.v16n1.2015.p39-50. [CrossRef] [Google Scholar]
- S. Stamenković, V. Beškoski, I. Karabegović, M. Lazić, and N. Nikolić, “Microbial fertilizers: A comprehensive review of current findings and future perspectives,” Spanish J. Agric. Res., vol. 16, no. 1, pp. 1-18, 2018. DOI: 10.5424/sjar/2018161-12117. [Google Scholar]
- R. Hulupi, “Libtukom: Varietas Kopi Liberika Anjuran untuk Lahan Gambut,” War. Pus. Penelit. Kopi dan Kakao Indones., vol. 26, no. 1, 2014. [Google Scholar]
- B. Martono, “Performance of the Selected Main Tree of Liberoid Coffee in the Peatland of Meranti Island, Riau,” J. Wetl. Environ. Manag., vol. 5, no. 1, p. 32, 2017. DOI: 10.20527/jwem.v5i1.126. [Google Scholar]
- M. Gibson and P. Newsham, “Tea and Coffee,” in Food Science and the Culinary Arts, P. Osborn, Ed. Andre Gerhard Wolff, 2018, pp. 353-372. [CrossRef] [Google Scholar]
- B. Hafif and K. D. Sasmita, “The organic carbon dynamics of peat soil under liberica coffee cultivation,” IOP Conf. Ser. Earth Environ. Sci., vol. 418, no. 1, 2020. DOI: 10.1088/1755-1315/418/1/012021. [CrossRef] [Google Scholar]
- M. Könönen, J. Jauhiainen, R. Laiho, K. Kusin, and H. Vasander, “Physical and chemical properties of tropical peat under stabilised land uses,” Mires Peat, vol. 16, no. November, 2015. [Google Scholar]
- G. L. Miller, “Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar,” Anal. Chem., vol. 31, no. 3, pp. 426-428, 1959. DOI: 10.1021/ac60147a030. [CrossRef] [Google Scholar]
- E. Santoso, “Mikroba Pelarut Fosfat,” in Soil Biological Analysis Methods, R. Saraswati, E. Husen, and R. D. M. Simanungkalit, Eds. Balai Besar Litbang Sumberdaya Lahan Pertanian, 2007, pp. 1-271. [Google Scholar]
- M. Suleman, S. Yasmin, M. Rasul, M. Yahya, B. M. Atta, and M. S. Mirza, “Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat,” PLoS One, vol. 13, no. 9, pp. 1-28, 2018. DOI: 10.1371/journal.pone.0204408. [Google Scholar]
- K. Patel, D. Goswami, P. Dhandhukia, and J. Thakker, “Techniques to Study Microbial Phytohormones,” in Bacterial Metabolites in Sustainable Agroecosystem, Sustainable Development and Biodiversity, 12th ed., no. March 2016, D. K. Maheshwari (ed.), Ed. New York: Springer International Publishing Switzerland 2015, 2015, pp. 1-27. [Google Scholar]
- L. R. Lynd, P. J. Weimer, W. H. Van Zyl, and S. Isak, “Microbial Cellulose Utilization: Fundamentals and Biotechnology,” Microbiol. Mol. Biol. Rev., vol. 66, no. 3, pp. 506-577, 2002. DOI: 10.1128/MMBR.66.3.506. [CrossRef] [PubMed] [Google Scholar]
- A. Ulrich, G. Klimke, and S. Wirth, “Diversity and Activity of Cellulose-Decomposing Bacteria, Isolated from a Sandy and a Loamy Soil after Long-Term Manure Application,” Microb Ecol, vol. 55, pp. 512-522, 2008. DOI: 10.1007/s00248-007-9296-0. [CrossRef] [PubMed] [Google Scholar]
- L. Sun, J. Zhang, Q. Chen, J. He, Q. Li, and S. Li, “Comamonas jiangduensis sp. nov., a biosurfactant-producing bacterium isolated from agricultural soil,” Int. J. Syst. Evol. Microbiol., vol. 63, pp. 2168-2173, 2013. DOI: 10.1099/ijs.0.045716-0. [CrossRef] [PubMed] [Google Scholar]
- K. Hatayama, “Comamonas humi sp. nov., isolated from soil,” Int. J. Syst. Evol. Microbiol., vol. 64, pp. 3976-3982, 2014. DOI: 10.1099/ijs.0.067439-0. [CrossRef] [PubMed] [Google Scholar]
- N. O. G. Jørgensen, K. K. Brandt, O. Nybroe, and M. Hansen, “Delftia lacustris sp. nov., a peptidoglycan-degrading bacterium from fresh water, and emended description of Delftia tsuruhatensis as a peptidoglycan-degrading bacterium,” Int. J. Syst. Evol. Microbiol., vol. 59, no. 9, pp. 2195-2199, 2009. DOI: 10.1099/ijs.0.008375-0. [CrossRef] [PubMed] [Google Scholar]
- V. Braña, C. Cagide, and M. A. Morel, “The Sustainable Use of Delftia in Agriculture, Bioremediation, and Bioproducts Synthesis,” in Microorganisms for Sustainability I, S. C. Sowinski, Ed. Singapore: Springer Science+Business Media Singapore, 2016, pp. 227-247. [Google Scholar]
- M. Y. Khanghahi, S. Strafella, I. Allegretta, and C. Crecchio, “Isolation of Bacteria with Potential Plant-Promoting Traits and Optimization of Their Growth Conditions,” Curr. Microbiol., vol. 78, no. 2, pp. 464-478, 2021. DOI: 10.1007/s00284-020-02303-w. [CrossRef] [PubMed] [Google Scholar]
- P. Baas, C. Bell, L. M. Mancini, M. N. Lee, R. T. Conant, and M. D. Wallenstein, “Phosphorus mobilizing consortium Mammoth PTM enhances plant growth,” PeerJ, vol. 2016, no. 6, pp. 1-16, 2016. DOI: 10.7717/peerj.2121. [Google Scholar]
- É. Tamás, G. Mara, I. Máthé, É. Laslo, É. György, and S. Lányi, “Isolation, characterization and identification of nitrogen and phosphorus mobilizing bacteria,” Environ. Eng. Manag. J., vol. 11, no. 3, pp. 675-680, 2012. DOI: 10.30638/eemj.2012.085. [CrossRef] [Google Scholar]
- I. E. Marcano, C. A. Díaz-Alcántara, B. Urbano, and F. González-Andrés, “Assessment of bacterial populations associated with banana tree roots and development of successful plant probiotics for banana crop,” Soil Biol. Biochem., vol. 99, pp. 1-20, 2016. DOI: 10.1016/j.soilbio.2016.04.013. [CrossRef] [Google Scholar]
- D. Lesueur, R. Deaker, L. Herrman, L. Bräu, and J. Jansa, “The Production and Potential of Biofertilizers to Improve Crop Yields,” in Bioformulations: For Sustainable Agriculture, N. Arora, et al. Ed. Springer India 2016, 2016, pp. 71-92. [Google Scholar]
- A. Khalofah, M. Kilany, and H. Migdadi, “Phytostimulatory Influence of Comamonas testosteroni,” Plants, vol. 10, no. 790, 2021. DOI: 10.3390/plants10040790 Academic. [Google Scholar]
- M. A. Morel, M. C. Ubalde, V. Braña, and S. Castro-sowinski, “Delftia sp. JD2: a potential Cr(VI)-reducing agent with plant growth-promoting activity,” Arch Microbiol, vol. 193, pp. 63-68, 2011. DOI: 10.1007/s00203-010-0632-2. [CrossRef] [PubMed] [Google Scholar]
- S. P. Prasannakumar, H. G. Gowtham, P. Hariprasad, K. Shivaprasad, and S. R. Niranjana, “Delftia tsuruhatensis WGR-UOM-BT1, a novel rhizobacterium with PGPR properties from Rauwolfia serpentina (L.) Benth. ex Kurz also suppresses fungal phytopathogens by producing a new antibiotic-AMTM,” Appl. Microbiol., vol. 61, pp. 460-468, 2015. DOI: 10.1111/lam.12479. [CrossRef] [Google Scholar]
- M. C. Ubalde, V. Braña, F. Sueiro, M. A. Morel, C. Marquez, and S. Castro-sowinski, “The Versatility of Delftia sp. Isolates as Tools for Bioremediation and Biofertilization Technologies,” Curr Microbiol, vol. 64, no. January 2015, pp. 597-603, 2012. DOI: 10.1007/s00284-012-0108-5. [CrossRef] [PubMed] [Google Scholar]
- U. Mathesius, H. R. M. Schlaman, H. P. Spaink, C. Sautter, B. G. Rolfe, and M. A. Djordjevic, “Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides,” Plant J., vol. 14, no. 1, pp. 23-34, 1998. [CrossRef] [PubMed] [Google Scholar]
- M. Schäfer, C. Brütting, I. D. Meza-canales, D. K. Großkinsky, and R. Vankova, “The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions,” J. Exp. Bot., no. May 21, pp. 1-12, 2015. DOI: 10.1093/jxb/erv214. [Google Scholar]
- S. Gajdosova et al., “Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants,” J. Exp. Bot., vol. 62, no. 8, pp. 2827-2840, 2011. DOI: 10.1093/jxb/erq457. [CrossRef] [PubMed] [Google Scholar]
- M. Mazid, T. A. Khan, and F. Mohammad, “Cytokinins, A classical multifaceted hormone in plant system,” J. Stress Physiol. Biochem., vol. 7, no. 4, pp. 348-368, 2016. [Google Scholar]
- P. J. Zwack and A. M. Rashotte, “Interactions between cytokinin signalling and abiotic stress responses,” J. Exp. Bot., vol. 66, no. 16, pp. 4863-4871, 2015. DOI: 10.1093/jxb/erv172. [CrossRef] [PubMed] [Google Scholar]
- Q. Zhu, M. Ozores-Hampton, Y. Li, K. Morgan, G. Liu, and R. S. Mylavarapu, “Effect of phosphorus rates on growth, yield, and postharvest quality of tomato in a calcareous soil,” HortScience, vol. 52, no. 10, pp. 1406-1412, 2017. DOI: 10.21273/HORTSCI12192-17. [CrossRef] [Google Scholar]
- H. Malhotra, Vandana, S. Sharma, and R. Pandey, “Phosphorus Nutrition: Plant Growth in Response to Deficiency and Excess,” in Plant Nutrients and Abiotic Stress Tolerance, no. June, M. Hanuzzaman, M. Fujita, H. Oku, K. Nahar, and B. Hawrylak-Nowak, Eds. Singapore: Springer Nature Singapore Pte Ltd., 2018, pp. 1-590. [Google Scholar]
- P. J. Zwack dan A. M. Rashotte, “Interactions between cytokinin signalling and abiotic stress responses,” J. Exp. Bot., vol. 66, no. 16, hal. 4863-4871, 2015. DOI: 10.1093/jxb/erv172. [CrossRef] [PubMed] [Google Scholar]
- Q. Zhu, M. Ozores-Hampton, Y. Li, K. Morgan, G. Liu, dan R. S. Mylavarapu, “Effect of phosphorus rates on growth, yield, and postharvest quality of tomato in a calcareous soil,” HortScience, vol. 52, no. 10, hal. 1406-1412, 2017. DOI: 10.21273/HORTSCI12192-17. [CrossRef] [Google Scholar]
- H. Malhotra, Vandana, S. Sharma, dan R. Pandey, “Phosphorus Nutrition: Plant Growth in Response to Deficiency and Excess,” in Plant Nutrients and Abiotic Stress Tolerance, no. June, M. Hanuzzaman, M. Fujita, H. Oku, K. Nahar, dan B. Hawrylak-Nowak, Eds. Singapore: Springer Nature Singapore Pte Ltd., 2018, hal. 1-590. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.