Open Access
Issue |
BIO Web Conf.
Volume 70, 2023
Maritime Continent Fulcrum International Conference (MaCiFIC 2023)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 7 | |
Section | Maritime Science and Technology | |
DOI | https://doi.org/10.1051/bioconf/20237001003 | |
Published online | 06 November 2023 |
- Pemprov Kepri. Tentang Kepri. Retrieved October 19, 2023, from https://kepriprov.go.id/laman/tentang-kepri [Google Scholar]
- Pham, Q. B., Yang, T. C., Kuo, C. M., Tseng, H. W., & Yu, P. S. Combing Random Forest and Least Square Support Vector Regression for Improving Extreme Rainfall Downscaling. Water, 11, 3 (2019). https://doi.org/10.3390/W11030451. [CrossRef] [Google Scholar]
- Chen, S. T. Mining Informative Hydrologic Data by Using Support Vector Machines and Elucidating Mined Data according to Information Entropy. Entropy, 17, 3, 1023–1041 (2015). https://doi.org/10.3390/E17031023 [CrossRef] [Google Scholar]
- Li, G., Sun, Y., He, Y., Li, X., & Tu, Q. Short-Term Power Generation Energy Forecasting Model for Small Hydropower Stations Using GA-SVM. Mathematical Problems in Engineering (2014). https://doi.org/10.1155/2014/381387. [Google Scholar]
- Bochenek, B., & Ustrnul, Z. Machine Learning in Weather Prediction and Climate Analyses—Applications and Perspectives. Atmosphere, 13, 2 (2022). https://doi.org/10.3390/atmos13020180. [CrossRef] [Google Scholar]
- Mohammad, R. M. A. An Enhanced Multiclass Support Vector Machine Model and its Application to Classifying File Systems Affected by a Digital Crime. Journal of King Saud University - Computer and Information Sciences, 34, 2, 179–190 (2022). https://doi.org/10.1016/J.JKSUCI.2019.10.010. [CrossRef] [Google Scholar]
- Shi, B., Ye, H., Heidari, A. A., Zheng, L., Hu, Z., Chen, H., Turabieh, H., Mafarja, M., & Wu, P. Analysis of COVID-19 severity from the perspective of coagulation index using evolutionary machine learning with enhanced brain storm optimization. Journal of King Saud University - Computer and Information Sciences, 34, 8, 4874–4887 (2022). https://doi.org/10.1016/J.JKSUCI.2021.09.019 [CrossRef] [Google Scholar]
- Zendehboudi, A., Baseer, M. A., & Saidur, R. Application of support vector machine models for forecasting solar and wind energy resources: A review. Journal of Cleaner Production, 199, 272–285 (2018). https://doi.org/10.1016/J.JCLEPRO.2018.07.164. [CrossRef] [Google Scholar]
- Xue, J., Cai, D., & Zhou, G. Application of support vector machines in photovoltaic power prediction. Proceedings - 2022 14th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC 2022), 56–59. https://doi.org/10.1109/IHMSC55436.2022.00022. [Google Scholar]
- Yin, G., Yoshikane, T., Yamamoto, K., Kubota, T., & Yoshimura, K. A support vector machine-based method for improving real-time hourly precipitation forecast in Japan. Journal of Hydrology, 612, 128125 (2022). https://doi.org/10.1016/j.jhydrol.2022.128125. [CrossRef] [Google Scholar]
- Hussein, E., Ghaziasgar, M., & Thron, C. Regional rainfall prediction using support vector machine classification of large-scale precipitation maps. Proceedings of 2020 23rd International Conference on Information Fusion (FUSION 2020). https://doi.org/10.23919/FUSION45008.2020.9190285. [Google Scholar]
- Zhu, Y., Zhao, Y., Zhang, J., Geng, N., & Huang, D. Spring onion seed demand forecasting using a hybrid Holt-Winters and support vector machine model. PLoS ONE, 14, 7 (2019). https://doi.org/10.1371/journal.pone.0219889. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.