Open Access
Issue
BIO Web Conf.
Volume 72, 2023
2023 International Conference on Food Science and Bio-medicine (ICFSB 2023)
Article Number 01002
Number of page(s) 5
Section Food Ingredients Application and Food Safety Identification
DOI https://doi.org/10.1051/bioconf/20237201002
Published online 08 November 2023
  • Chen X.S., Mao Z.Q., Shen X., et al. (2017) Key technology of cost saving and efficiency enhancement in China’s apple industry I.: The breeding of new variety of easy colouring functional apple and nonbag cultivation technology [J]. China Fruit Sci, (1): 14, 103. [Google Scholar]
  • Chen X.S., Wang Z.G. (2016) Investigation on the problem of “difficulty in selling fruit” of apples in Shandong Province and related suggestions [J]. Deciduous Fruit Tree, 48(4): 1-2. [Google Scholar]
  • Wu W.Y., Liu W., Yao Z.H. (2023) A study on the quantification of apple quality grading by hierarchical mixture[J]. South China Fruits, 52(1): 152-156. DOI: 10.13938/j.issn.1007-1431.20220434. [Google Scholar]
  • Li Z., Chi S.G. (2021) Occurrence and control of apple mold heart disease in Huangpan Plain[J]. Practical Technology and Information of Fruit Trees, (12):31-33.) [Google Scholar]
  • Liu W.F., Zhang Y.L., Wang Y.H. (2021) Investigation of occurrence and pathogenic factors of apple mold heart disease in Shaanxi[J]. China Plant Protection Guide, 41(11):33-35+47.) [Google Scholar]
  • Lei Y., He D.J., Zhou Z.Y., Zhang H.H., et al. (2016) Detection of moldy core of apples based on visible/near infrared transmission energy spectroscopy [J]. Trans Chin Soc Agric Mach, 47(4): 193-200. [Google Scholar]
  • Zhang H.H., Tian S.J., Ma M.J., et al. (2019) Detection method of moldy core in apples using modified transmission spectrum based on size of fruit [J]. Trans Chin Soc Agric Mach, 50(1): 313-320. [Google Scholar]
  • Zhang Z.J., Fu X.Y., Chen K.M., et al. (2022) Research on non-destructive detection method of moldy apple core by fusing density and spectral features[J] Food and Fermentation Industries, 48(15) : 281-287 DOI: 10.13995/j.cnki.11-1802/ts.029024. [Google Scholar]
  • Zhang J.C., Zhang P., Tian S.P., et al. (2020) Research progress in nondestructive detection technology of apple core rot [J]. Packaging Engineering, 41(1): 2330. DOI: 10.19554/j.cnki.1001-3563.2020.01.004. [Google Scholar]
  • Zhang M.C. (2022) Research and demonstration of digital technology for non-destructive testing and traceability of apples in Maoxian County [D]. Xihua University. DOI: 10.27411/d.cnki.gscgc.2022.000492. [Google Scholar]
  • Liu Y.J., Yang Y.P. (2020) Application and development research of nondestructive testing technology for quality control of fruit [J]. North Horticulture, (1): 152-157. [Google Scholar]
  • Zhang W.W., Yang K.M., Xia T., et al. (2017) Correlation analysis on spectral fractional-order differential and the content of heavy metal copper in corn leaves [J]. Science Technology and Engineering, 17(25): 33-38. [Google Scholar]
  • Xia T., Yang K.M., Liu C., et al. (2017) Study on copper pollution prediction of corn leaves based on the spectral parameters and the Cu2, absorption mechanism [J]. Science Technology and Engineering, 17(33): 104-111. [Google Scholar]
  • Gong Y.J., Pei J.Q., Li H.B., et al. (2017) Design of portable quickly nondestructive detection system apple quality [J]. Journal of Shenyang Agricultural University, 48(2): 238-243. [Google Scholar]
  • Bratu A.M., Popa C., Bojan M., et al. (2021) Nondestructive methods for fruit quality evaluation[J]. Scientific Reports, 11(1):7782-7782. [CrossRef] [PubMed] [Google Scholar]
  • Guo Z.M., Wang J.Y., Song Y., et al. (2021) Research progress of sensing detection and monitoring technology for fruit and vegetable quality control [J]. Smart Agriculture(Chinese and English), 3(4): 14-28. [Google Scholar]
  • Liu H.L., Zhang Z.X., Chen A., et al. (2023) Detection method for apple moldy cores based on spectral shape features [J]. Transactions of the Chinese Society of Agricultural Engineering, 39(1): 162-170. [Google Scholar]
  • Andrea G., Giorgio A., Marco B., et al. (2022) A Novel Hyperspectral Method to Detect Moldy Core in Apple Fruits.[J]. Sensors (Basel, Switzerland), 22(12). [Google Scholar]
  • Tian S., Zhang M., Li B., et al. (2020) Measurement orientation compensation and comparison of transmission spectroscopy for online detection of moldy apple core[J]. Infrared Physics & Technology, 111: [Google Scholar]
  • Hara R., Ishigaki M., Ozaki Y., et al. (2021) Effect of Raman exposure time on the quantitative and discriminant analyses of carotenoid concentrations in intact tomatoes[J]. Food Chemistry, 360(24):129896. DOI: 10.1016/j.foodchem.2021.129896. [CrossRef] [PubMed] [Google Scholar]
  • Varnasseri M., Xu Y., Goodacre R. (2022) Rapid detection and quantification of the adulteration of orange juice with grapefruit juice using handheld Raman spectroscopy and multivariate analysis[J]. [Google Scholar]
  • Josu T., Maite M., Héctor M., et al. (2013) Use of portable devices and confocal Raman spectrometers at different wavelength to obtain the spectral information of the main organic components in tomato (Solanum lycopersicum) fruits[J]. Spectrochim Acta A Mol Biomol Spectrosc, 105: 391−399. [CrossRef] [PubMed] [Google Scholar]
  • Fan Y., Lai K., Barbara A.R., et al. (2015) Determination of carbaryl pesticide in Fuji apples using surfaceenhanced Raman spectroscopy coupled with multivariate analysis[J]. LWT Food Science and Technology, 60(1): 352−357. [CrossRef] [Google Scholar]
  • Josu T., Maite M., Héctor M., et al. (2017) Portable Raman spectroscopy for an in-situ monitoring the ripening of tomato (Solanum lycopersicum) fruits[J]. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 180: 138−143. [CrossRef] [PubMed] [Google Scholar]
  • Li Z.C., Zheng X.D., Yan X.H., et al. (2021) Research progress of non-destructive testing technology for fruit and vegetable quality[J]. China Fruit and Vegetables, 41(03):34-40. DOI: 10.19590/j.cnki.10081038.2021.03.007.) [Google Scholar]
  • Li X., Cao Y.D., Li Z.M. (2019) Gas expressions of apple quality and their sensing technologies [J]. China Agricultural Information, (31): 74-83. [Google Scholar]
  • Jia W.J., Li M.N., Wang Y.L., et al. (2016) Application of electronic nose technology on the detection of fruits and vegetables [J]. Journal of Food Safety and Quality Detection, 7(2): 410-418. DOI: 10.19812/j.cnki.jfsq11-5956/ts.2016.02.004. [Google Scholar]
  • Li Y. (2014) Non-destructive testing of apple qaulity based on electronic nose [D]. Northwest A&F University. [Google Scholar]
  • Gómez A.H., Wang J., Hu G.X. (2007) Discrimination of storage shelf-life for mandarin by electronic nose technique[J]. Lebensmittel-Wissenschaft und Technologie, 40(4): 681-689. [CrossRef] [Google Scholar]
  • Zhang J.C., Zhang P., Xue Y.L., et al. (2022) Characterization of characteristic odor and establishment of nondestructive detection model of core rot apples based on electronic nose [J]. Food and Fermentation Industry, 48(2): 267-273. DOI: 10.13995/j.cnki.11-1802/ts.026717. [Google Scholar]
  • Yang C.Y., Yuan H.F., Ma H.L., et al. (2021) Nondestructive detection of apple moldy core based on FT –NIR and electronic nose technology [J]. Food and Fermentation Industry, 47(7): 211-216. DOI: 10.13995/j.cnki.11-1802/ts.025671. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.