Open Access
Issue
BIO Web Conf.
Volume 72, 2023
2023 International Conference on Food Science and Bio-medicine (ICFSB 2023)
Article Number 01012
Number of page(s) 6
Section Food Ingredients Application and Food Safety Identification
DOI https://doi.org/10.1051/bioconf/20237201012
Published online 08 November 2023
  • Bernardi B, Wendland J. Homologous recombination: a GRAS yeast genome editing tool[J]. Fermentation, 2020, 6(2): 57. [CrossRef] [Google Scholar]
  • Zhang Z X, Wang L R, Xu Y S, et al. Recent advances in the application of multiplex genome editing in Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology, 2021, 105(10): 3873-3882. [CrossRef] [PubMed] [Google Scholar]
  • Bailey T B, Whitty P A, Selker E U, et al. Tup1 is critical for transcriptional repression in Quiescence in S. cerevisiae[J]. Plos Genetics, 2022, 18(12): e1010559. [Google Scholar]
  • Khan S H. Genome-editing technologies: concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application[J]. Molecular Therapy-Nucleic Acids, 2019, 16: 326-334. [CrossRef] [Google Scholar]
  • Jabalameli H R, Zahednasab H, Karimi-Moghaddam A, et al. Zinc finger nuclease technology: advances and obstacles in modelling and treating genetic disorders[J]. Gene, 2015, 558(1): 1-5. [CrossRef] [PubMed] [Google Scholar]
  • Becker S, Boch J. TALE and TALEN genome editing technologies[J]. Gene and Genome Editing, 2021, 2: 100007. [CrossRef] [Google Scholar]
  • Li H, Yang Y, Hong W, et al. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects[J]. Signal transduction and targeted therapy, 2020, 5(1): 1. [CrossRef] [PubMed] [Google Scholar]
  • Mak A N S, Bradley P, Cernadas R A, et al. The crystal structure of TAL effector PthXo1 bound to its DNA target[J]. Science, 2012, 335(6069): 716-719. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Deng D, Yan C, Pan X, et al. Structural basis for sequence-specific recognition of DNA by TAL effectors[J]. Science, 2012, 335(6069): 720-723. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Karimian A, Azizian K, Parsian H, et al. CRISPR/Cas9 technology as a potent molecular tool for gene therapy[J]. Journal of cellular physiology, 2019, 234(8): 12267-12277. [CrossRef] [PubMed] [Google Scholar]
  • Makarova K S, Haft D H, Barrangou R, et al. Evolution and classification of the CRISPR–Cas systems[J]. Nature Reviews Microbiology, 2011, 9(6): 467-477. [CrossRef] [PubMed] [Google Scholar]
  • Zhuo C, Zhang J, Lee J H, et al. Spatiotemporal control of CRISPR/Cas9 gene editing[J]. Signal Transduction and Targeted Therapy, 2021, 6(1): 238. [CrossRef] [PubMed] [Google Scholar]
  • Wang H X, Li M, Lee C M, et al. CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery[J]. Chemical reviews, 2017, 117(15): 9874-9906. [CrossRef] [PubMed] [Google Scholar]
  • Zheng N, Li L, Wang X. Molecular mechanisms, off‐ target activities, and clinical potentials of genome editing systems[J]. Clinical and Translational Medicine, 2020, 10(1): 412-426. [CrossRef] [PubMed] [Google Scholar]
  • Gupta R M, Musunuru K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPRCas9[J]. The Journal of clinical investigation, 2014, 124(10): 4154-4161. [CrossRef] [PubMed] [Google Scholar]
  • Chandrasegaran S. Recent advances in the use of ZFN-mediated gene editing for human gene therapy[J]. Cell & gene therapy insights, 2017, 3(1): 33. [CrossRef] [PubMed] [Google Scholar]
  • Pattanayak V, Ramirez C L, Joung J K, et al. Revealing off-target cleavage specificities of zincfinger nucleases by in vitro selection[J]. Nature methods, 2011, 8(9): 765-770. [CrossRef] [PubMed] [Google Scholar]
  • Mussolino C, Alzubi J, Fine E J, et al. TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity[J]. Nucleic acids research, 2014, 42(10): 6762-6773. [CrossRef] [PubMed] [Google Scholar]
  • Guilinger J P, Pattanayak V, Reyon D, et al. Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity[J]. Nature methods, 2014, 11(4): 429-435. [CrossRef] [PubMed] [Google Scholar]
  • Yip B H. Recent advances in CRISPR/Cas9 delivery strategies[J]. Biomolecules, 2020, 10(6): 839. [CrossRef] [PubMed] [Google Scholar]
  • Zarei A, Razban V, Hosseini S E, et al. Creating cell and animal models of human disease by genome editing using CRISPR/Cas9[J]. The journal of gene medicine, 2019, 21(4): e3082. [CrossRef] [PubMed] [Google Scholar]
  • Zhang X H, Tee L Y, Wang X G, et al. Off-target effects in CRISPR/Cas9-mediated genome engineering[J]. Molecular Therapy-Nucleic Acids, 2015, 4: e264. [CrossRef] [Google Scholar]
  • Gabriel R, Lombardo A, Arens A, et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity[J]. Nature biotechnology, 2011, 29(9): 816-823. [CrossRef] [PubMed] [Google Scholar]
  • Yan W, Smith C, Cheng L. Expanded activity of dimer nucleases by combining ZFN and TALEN for genome editing[J]. Scientific reports, 2013, 3(1): 1-6. [Google Scholar]
  • Riesenberg S, Chintalapati M, Macak D, et al. Simultaneous precise editing of multiple genes in human cells[J]. Nucleic acids research, 2019, 47(19): e116-e116. [CrossRef] [PubMed] [Google Scholar]
  • Zhang Q, Xing H L, Wang Z P, et al. Potential highfrequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention[J]. Plant molecular biology, 2018, 96: 445-456. [CrossRef] [PubMed] [Google Scholar]
  • Legrand M, Jaitly P, Feri A, et al. Candida albicans: an emerging yeast model to study eukaryotic genome plasticity[J]. Trends in Genetics, 2019, 35(4): 292-307. [CrossRef] [Google Scholar]
  • Lee Y G, Kim B Y, Bae J M, et al. Genome-edited Saccharomyces cerevisiae strains for improving quality, safety, and flavor of fermented foods[J]. Food Microbiology, 2022, 104: 103971. [CrossRef] [PubMed] [Google Scholar]
  • Cai P, Gao J, Zhou Y. CRISPR-mediated genome editing in non-conventional yeasts for biotechnological applications[J]. Microbial cell factories, 2019, 18: 1-12. [CrossRef] [PubMed] [Google Scholar]
  • Navarrete C, Martínez J L. Non-conventional yeasts as superior production platforms for sustainable fermentation based bio-manufacturing processes[J]. Aims Bioengineering, 2020, 7(4): 289-305. [CrossRef] [Google Scholar]
  • Kachroo A H, Vandeloo M, Greco B M, et al. Humanized yeast to model human biology, disease and evolution[J]. Disease Models & Mechanisms, 2022, 15(6): dmm049309. [CrossRef] [PubMed] [Google Scholar]
  • Wang L, Zhang W, Cao Y, et al. Interdependent recruitment of CYC8/TUP1 and the transcriptional activator XYR1 at target promoters is required for induced cellulase gene expression in Trichoderma reesei[J]. PLoS Genetics, 2021, 17(2): e1009351. [Google Scholar]
  • Lee J E, Oh J H, Ku M H, et al. Ssn6 has dual roles in Candida albicans filament development through the interaction with Rpd31[J]. FEBS letters, 2015, 589(4): 513-520. [CrossRef] [PubMed] [Google Scholar]
  • Kumawat R, Tomar R S. Heavy metal exposure induces Yap1 and Hac1 mediated derepression of GSH1 and KAR2 by Tup1-Cyc8 complex[J]. Journal of Hazardous Materials, 2022, 429: 128367. [CrossRef] [PubMed] [Google Scholar]
  • Hanlon S E, Rizzo J M, Tatomer D C, et al. The stress response factors Yap6, Cin5, Phd1, and Skn7 direct targeting of the conserved co-repressor Tup1-Ssn6 in S. cerevisiae[J]. PloS one, 2011, 6(4): e19060. [Google Scholar]
  • Chen K, Wilson M A, Hirsch C, et al. Stabilization of the promoter nucleosomes in nucleosome-free regions by the yeast Cyc8–Tup1 corepressor[J]. Genome research, 2013, 23(2): 312-322. [CrossRef] [PubMed] [Google Scholar]
  • Jennings B H, Ish-Horowicz D. The Groucho/TLE/Grg family of transcriptional corepressors[J]. Genome biology, 2008, 9(1): 1-7. [Google Scholar]
  • Córdova P, Alcaíno J, Bravo N, et al. Regulation of carotenogenesis in the red yeast Xanthophyllomyces dendrorhous: the role of the transcriptional corepressor complex Cyc8–Tup1 involved in catabolic repression[J]. Microbial Cell Factories, 2016, 15(1): 1-19. [CrossRef] [PubMed] [Google Scholar]
  • Chujo M, Yoshida S, Ota A, et al. Acquisition of the ability to assimilate mannitol by Saccharomyces cerevisiae through dysfunction of the general corepressor Tup1-Cyc8[J]. Applied and environmental microbiology, 2015, 81(1): 9-16. [CrossRef] [PubMed] [Google Scholar]
  • West R M, Gronvall G K. CRISPR Cautions: Biosecurity implications of gene editing[J]. Perspectives in biology and medicine, 2020, 63(1): 73-92. [CrossRef] [PubMed] [Google Scholar]
  • Tartas A, Zarkadas C, Palaiomylitou M, et al. Tup1Ssn6 global transcriptional co-repressor: Role of the N-terminal glutamine-rich region of Ssn6[J]. PloS one, 2017, 12(10): e0186363. [Google Scholar]
  • Kaul A K, Schuster E F, Jennings B H. Recent insights into Groucho co-repressor recruitment and function[J]. Transcription, 2015, 6(1): 7-11. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.