Open Access
Issue |
BIO Web Conf.
Volume 72, 2023
2023 International Conference on Food Science and Bio-medicine (ICFSB 2023)
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 6 | |
Section | Cell Biology and Pharmaceutical Engineering Research | |
DOI | https://doi.org/10.1051/bioconf/20237202001 | |
Published online | 08 November 2023 |
- Reis, J., Fischer, J. T., Prichard, G., Weiller, C., Cohen, L. G., & Fritsch, B. (2015). Timebut not sleep-dependent consolidation of tDCS-enhanced visuomotor skills. Cerebral cortex (New York, N.Y.: 1991), 25(1), 109–117. https://doi.org/10.1093/cercor/bht208 [Google Scholar]
- Hick, W. E. (1952). On the Rate of Gain of Information. Quarterly Journal of Experimental Psychology, 4(1), 11–26. https://doi.org/10.1080/17470215208416600 [CrossRef] [Google Scholar]
- Donders F. C. (1969). On the speed of mental processes. Acta psychologica, 30, 412–431. https://doi.org/10.1016/0001-6918(69)90065-1 [CrossRef] [PubMed] [Google Scholar]
- Kuo, M. F., Unger, M., Liebetanz, D., Lang, N., Tergau, F., Paulus, W., & Nitsche, M. A. (2008). Limited impact of homeostatic plasticity on motor learning in humans. Neuropsychologia, 46(8), 2122–2128. https://doi.org/10.1016/j.neuropsychologia.2008.02.023 [CrossRef] [PubMed] [Google Scholar]
- Filmer, H. L., Dux, P. E., & Mattingley, J. B. (2014). Applications of transcranial direct current stimulation for understanding brain function. Trends in neurosciences, 37(12), 742–753. https://doi.org/10.1016/j.tins.2014.08.003 [CrossRef] [Google Scholar]
- Greinacher, R., Buhôt, L., Möller, L., & Learmonth, G. (2019). The time course of ineffective shamblinding during low-intensity (1 mA) transcranial direct current stimulation. The European journal of neuroscience, 50(8), 3380–3388. https://doi.org/10.1111/ejn.14497 [CrossRef] [PubMed] [Google Scholar]
- Ambrus, G. G., Chaieb, L., Stilling, R., Rothkegel, H., Antal, A., & Paulus, W. (2016). Monitoring transcranial direct current stimulation induced changes in cortical excitability during the serial reaction time task. Neuroscience letters, 616, 98–104. https://doi.org/10.1016/j.neulet.2016.01.039 [CrossRef] [PubMed] [Google Scholar]
- Nitsche, M. A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., & Tergau, F. (2003). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. Journal of cognitive neuroscience, 15(4), 619–626. https://doi.org/10.1162/089892903321662994 [CrossRef] [PubMed] [Google Scholar]
- Kantak, S. S., Mummidisetty, C. K., & Stinear, J. W. (2012). Primary motor and premotor cortex in implicit sequence learning--evidence for competition between implicit and explicit human motor memory systems. The European journal of neuroscience, 36(5), 2710–2715. https://doi.org/10.1111/j.14609568.2012.08175.x [CrossRef] [PubMed] [Google Scholar]
- Kang, E. K., & Paik, N. J. (2011). Effect of a tDCS electrode montage on implicit motor sequence learning in healthy subjects. Experimental & translational stroke medicine, 3(1), 4. https://doi.org/10.1186/2040-7378-3-4 [CrossRef] [PubMed] [Google Scholar]
- Horvath, J. C., Carter, O., & Forte, J. D. (2016). No significant effect of transcranial direct current stimulation (tDCS) found on simple motor reaction time comparing 15 different simulation protocols. Neuropsychologia, 91, 544–552. [CrossRef] [PubMed] [Google Scholar]
- Talimkhani, A., Abdollahi, I., Mohseni-Bandpei, M. A., Ehsani, F., Khalili, S., & Jaberzadeh, S. (2019). Differential Effects of Unihemispheric Concurrent Dual-Site and Conventional tDCS on Motor Learning: A Randomized, Sham-Controlled Study. Basic and clinical neuroscience, 10(1), 59–72. https://doi.org/10.32598/bcn.9.10.350 [PubMed] [Google Scholar]
- Agboada, D., Mosayebi Samani, M., Jamil, A., Kuo, M. F., & Nitsche, M. A. (2019). Expanding the parameter space of anodal transcranial direct current stimulation of the primary motor cortex. Scientific reports, 9(1), 18185. https://doi.org/10.1038/s41598019-54621-0 [CrossRef] [PubMed] [Google Scholar]
- Muellbacher, W., Ziemann, U., Wissel, J., Dang, N., Kofler, M., Facchini, S., et al. (2002). Early consolidation in human primary motor cortex. Nature, 415, 640–644. [Google Scholar]
- Stefan, K., Wycislo, M., Gentner, R., Schramm, A., Naumann, M., Reiners, K., et al. (2005). Temporary occlusion of associative motor cortical plasticity by prior dynamic motor training. Cerebral Cortex, 16, 376–385. [Google Scholar]
- Ziemann, U., Iliac, V., Pauli, C., Meintzschel, F., & Ruge, D. (2004). Learning modifies subsequent induction of long-term potentiation-like and longterm depression-like plasticity in human motor cortex. Journal of Neuroscience, 24, 1666–1672. [CrossRef] [PubMed] [Google Scholar]
- Abbott, L., & Nelson, S. (2000). Synaptic plasticity: Taming the beast. Nature Neuro-science, 3(Suppl.), 1178–1183. [CrossRef] [PubMed] [Google Scholar]
- Bienenstock, E. L., Cooper, L. N., & Munro, P. W. (1982). Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex. Journal of Neuroscience, 2, 32–48. [CrossRef] [PubMed] [Google Scholar]
- Sejnowski, T. J. (1977). Statistical constraints on synaptic plasticity. Journal of Theoretical Biology, 69, 385–389. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.