Open Access
Issue
BIO Web Conf.
Volume 75, 2023
The 5th International Conference on Bioinformatics, Biotechnology, and Biomedical Engineering (BioMIC 2023)
Article Number 01005
Number of page(s) 10
Section Bioinformatics and Data Mining
DOI https://doi.org/10.1051/bioconf/20237501005
Published online 15 November 2023
  • Gorbalenya, A. E., Baker, S. C., Baric, R. S., de Groot, R. J., Drosten, C., Gulyaeva, A. A., Ziebuhr, J. (2020). The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARSCoV-2. Nat. Microbiol, 5, 536-544. [CrossRef] [Google Scholar]
  • Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Tan, W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med, 382, 727–733. doi:https://doi.org/10.1056/NEJMoa2001017 [Google Scholar]
  • Chen, N., Zhou, M., Dong, X., Qu, J., G. F., H. Y., Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 395, 507–513. doi:https://doi.org/10.1016/S01406736(20)30211-7. [CrossRef] [PubMed] [Google Scholar]
  • Zhou, P., Yang, X., & Wang, X. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579, 270-273. doi:https://doi.org/10.1038/s41586-020-2012-7 [CrossRef] [PubMed] [Google Scholar]
  • Shu, Y., & McCauley, J. (2017). GISAID: Global initiative on sharing all influenza data—from vision to reality. Eurosurveillance, 22, 30494. doi:https://doi.org/10.2807/15607917.ES.2017.22.13.30494 [CrossRef] [Google Scholar]
  • Fehr, A., & Perlman, S. (2015). Coronaviruses: An overview of their replication and pathogenesis. Methods mol. biol., 1282, 1–23. doi: https://doi.org/10.1007/978-1-4939-2438-7_1 [CrossRef] [PubMed] [Google Scholar]
  • Jenkins, G., Rambaut, A., Pybus, O., & Holmes, E. (2002). Rates of molecular evolution in rna viruses: a quantitative phylogenetic analysis. J. Mol. Evol, 54, 156–165. doi:https://doi.org/10.1007/s00239-001-0064-3 [CrossRef] [PubMed] [Google Scholar]
  • Duchene, S., Featherstone, L., HaritopoulouSinanidou, M., Rambaut, A., Lemey, P., & Baele, G. (2020). Temporal signal and the phylodynamic threshold of SARS-CoV-2. Virus Evol, 6(2). doi:https://doi.org/10.1093/ve/veaa061 [CrossRef] [PubMed] [Google Scholar]
  • Carroll, M., Matthews, D., Hiscox, J., Elmore, M., Pollakis, G., Rambaut, A., Becker. (2015). Temporal and spatial analysis of the 2014-2015 Ebola virus outbreak in West Africa. Nature, 524, 97–101. doi:https://doi.org/10.1038/nature14594 [CrossRef] [PubMed] [Google Scholar]
  • Zhao, Z., Li, H., Wu, X., Zhong, Y., Zhang, K., Zhang, Y., Fu, Y. (2004). Moderate mutation rate in the SARS coronavirus genome and its implications. BMC Evol Biol, 4, 21. doi:10.1186/1471-2148-4-21 [CrossRef] [PubMed] [Google Scholar]
  • Wang, C., Liu, Z., Chen, Z., Huang, X., Xu, M., He, T., & Zhang, Z. (2020). The establishment of reference sequence for SARS-CoV-2 and variation analysis. J. Med. Virol., 92(6), 667-674. doi: https://doi.org/10.1002/jmv.25762 [CrossRef] [PubMed] [Google Scholar]
  • Korber, B., Fischer, W., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Tang, H. (2020). Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell, 182(4), 812–827. doi:10.1016/j.cell.2020.06.043 [CrossRef] [PubMed] [Google Scholar]
  • Sherry, S., Ward, M., & Sirotkin, K. (1999). dbSNP—Database for Single Nucleotide Polymorphisms and Other Classes of Minor Genetic Variation. Genome Res, 9(8), 677–679. [CrossRef] [PubMed] [Google Scholar]
  • Khalid, Z., & Sezerman, O. (2020). A comprehensive study on identifying the structural and functional SNPs of human neuronal membrane glycoprotein M6A (GPM6A). J. Biomol. Struct, 39(8), 2693-2701, 1-9. [Google Scholar]
  • André, N. M., Cossic, B., Davies, E., Miller, A. D., & Whittaker, G. R. (2019). Distinct mutation in the feline coronavirus spike protein cleavage activation site in a cat with feline infectious peritonitis-associated meningoencephalomyelitis. J. Feline Med. Surg. Open Rep, 5(1), 2055116919856103. [Google Scholar]
  • Davies, N. G., Abbott, S., Barnard, R. C., Jarvis, C. I., Kucharski, A. J., Munday, J. D., Wong, K. L. (2021). Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science, 372(6538). [CrossRef] [PubMed] [Google Scholar]
  • Pearson, C. A., Russell, T. W., Davies, N. G., Kucharski, A. J., CMMID COVID-19 working group, Edmunds, W. J., & Eggo, R. M. (2021). Estimates of severity and transmissibility of novel South Africa SARS-CoV-2 variant 501Y. V2. Preprint, 50, 1-4. [Google Scholar]
  • Faria, N. R., Mellan, T. A., Whittaker, C., Claro, I. M., Candido, D. d., Mishra, S., Andrade, P. (2021). Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science, 372(6544). [Google Scholar]
  • Allen, H., Vusirikala, A., Flannagan, J., Twohig, K. A., Zaidi, A., Chudasama, D., ... & Kall, M. (2022). Household transmission of COVID-19 cases associated with SARS-CoV-2 delta variant (B. 1.617. 2): national case-control study. Lancet Reg. Health Eur., 12. [Google Scholar]
  • Hasan, M. R., Sundararaju, S., Manickam, C., Mirza, F., Al-Hail, H., Lorenz, S., & Tang, P. (2021). A novel point mutation in the N gene of SARS-CoV-2 may affect the detection of the virus by reverse transcription-quantitative PCR. J. Clin. Microbiol., 59(4), 10-1128. [CrossRef] [Google Scholar]
  • Artesi, M., Bontems, S., Gobbels, P., Franckh, M., Maes, P., Boreux, R., Durkin, K. (2020). A recurrent mutation at position 26340 of SARSCoV-2 is associated with failure of the E gene quantitative reverse transcription-PCR utilize. J. Clin. Microbiol., 58. [CrossRef] [PubMed] [Google Scholar]
  • Ziegler, K., Steininger, P., Ziegler, R., Steinmann, J., Korn, K., & Ensser, A. (2020). SARS-CoV-2 samples may escape detection because of a single point mutation in the N gene. Euro Surveillance, 25(39). doi:https://doi.org/10.2807/15607917.ES.2020.25.39.2001650 [PubMed] [Google Scholar]
  • Vanaerschot, M., Mann, S., Webber, J., Kamm, J., Bell, S., Bell, J., Tato, C. (2020). Identification of a polymorphism in the N gene of SARS-CoV-2 that adversely impacts detection by reverse transcription-PCR. J. Clin. Microbiol., 59. [CrossRef] [PubMed] [Google Scholar]
  • Nguyen, T., Zhang, Y., & Pandolf, P. (2020). Virus against virus: a potential treatment for 2019-nCov (SARS-CoV-2) and other RNA viruses. Cell Res, 30, 189–90. [CrossRef] [PubMed] [Google Scholar]
  • Nasreen, S., Chung, H., He, S., Brown, K. A., Gubbay, J. B., Buchan, S. A., ... & Canadian Immunization Research Network (CIRN) Provincial Collaborative Network (PCN) Investigators. (2022). Effectiveness of COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe outcomes with variants of concern in Ontario. Nat. Microbiol., 7(3), 379-385. [Google Scholar]
  • Yuan, F., Wang, L., Fang, Y., & Wang, L. (2020). Global SNP analysis of 11,183 SARSCoV-2 strains reveals high genetic diversity. Transbound Emerg Dis, 1-17. doi:https://doi.org/10.1111/tbed.13931 [PubMed] [Google Scholar]
  • Das, A., Khurshid, S., Ferdausi, A., Nipu, E., Das, A., & Ahmed, F. (2021). Molecular insight into the genomic variation of SARS-CoV-2 strains from current outbreak. Comput. Biol. Chem, 93, 107533. doi:https://doi.org/10.1016/j.compbiolchem.2021.107533 [CrossRef] [Google Scholar]
  • Ghosh, N., Saha, I., Sharma, N., Nandi, S., & Plewczynski, D. (2021). Genome-wide analysis of 10664 SARS-CoV-2 genomes to identify virus strains in 73 countries based on single nucleotide polymorphism. Virus Res., 289. doi:https://doi.org/10.1016/j.virusres.2021.198401 [Google Scholar]
  • Saha, I., Ghosh, N., Pradhan, A., Sharma, N., Maity, D., & Mitra, K. (2021). Whole genome analysis of more than 10 000 SARS-CoV-2 virus unveils global genetic diversity and target region of NSP6. Bioinformatics, 22(2), 1106–1121. doi:10.1093/bib/bbab025 [Google Scholar]
  • Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., & Wang, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 395(10224), 565-574. [CrossRef] [PubMed] [Google Scholar]
  • Ayres, J. (2020). Surviving COVID-19: a disease tolerance perspective. Sci Adv, 6(18). [CrossRef] [PubMed] [Google Scholar]
  • Katoh, K., Misawa, K., Kuma, K.‐i., & Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res, 30(14), 3059-3066. doi:https://doi.org/10.1093/nar/gkf436 [CrossRef] [PubMed] [Google Scholar]
  • Andrew J. Page, C. B., Delaney, A. J., Soares, J., Seemann, T., Keane, J. A., & Harris, S. R. (2016). SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microbial Genomics, 2(4). doi:10.1099/mgen.0.000056 [Google Scholar]
  • Katoh, K., & Frith, M. C. (2012). Adding unaligned sequences into an existing alignment using MAFFT and LAST. Bioinformatics, 28(23), 3144-3146. doi:https://doi.org/10.1093/bioinformatics/bts578 [CrossRef] [Google Scholar]
  • Hadfield, J., Megill, C., Bell, S., Huddleston, J., Potter, B., Callender, C., Neher, R. (2018). Nextstrain: Real-time tracking of pathogen evolution. Bioinformatics, 34, 4121–4123. doi:https://doi.org/10.1093/bioinformatics/bty407 [CrossRef] [Google Scholar]
  • Kirchdoerfer, R. N., & Ward, A. B. (2019). Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat. Commun., 10(1), 2342. [CrossRef] [Google Scholar]
  • Pachetti, M., Marini, B., Benedetti, F., Giudici, F., Mauro, E., Storici, P., Ippodrino, R. (2020). Emerging SARS-CoV-2 mutation hot spots include a novel RNAdependent-RNA polymerase variant. J. Transl. Med., 18, 1-9. [CrossRef] [Google Scholar]
  • Wang, R., Chen, J., Gao, K., Hozumi, Y., Yin, C., & Wei, G.-W. (2021). Analysis of SARS-CoV-2 mutations in the United States suggests presence of four substrains and novel variant. Commun. Biol., 4, 228. doi: https://doi.org/10.1038/s42003-021-01754-6 [CrossRef] [Google Scholar]
  • Walls, A., Parl, Y., Tortorici, M., Wall, A., McGuire, A., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181, 281–292. [CrossRef] [PubMed] [Google Scholar]
  • Yurkovetskiy, L., Wang, X., Pascal, K. E., Tomkins-Tinch, C., Nyalile, T. P., Wang, Y., . . . Veinotte, K. (2020). Structural and functional analysis of the D614G SARSCoV-2 spike protein variant. Cell, 739–751. [CrossRef] [PubMed] [Google Scholar]
  • Zeng, W., Liu, G., Ma, H., Zhao, D., Yang, Y., Liu, M., Jin, T. (2020). Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem Biophys Res Commun, 527(3), 618-623. doi:10.1016/j.bbrc.2020.04.136 [CrossRef] [Google Scholar]
  • Pereira, F. (2020). Evolutionary dynamics of the SARS-CoV-2 ORF8 accessory gene. Infect. Genet. Evol., 85. doi:10.1016/j.meegid.2020.104525 [CrossRef] [Google Scholar]
  • Laha, S., Chakraborty, J., Das, S., Manna, S., S, B., & Chatterjee, R. (2020). Characterizations of SARS-CoV-2 mutational profile, spike protein stability and viral transmission. Infect. Genet. Evol., 85. doi:https://doi.org/10.1016/j.meegid.2020.104445 [CrossRef] [Google Scholar]
  • Bass, B. (2002). RNA editing by adenosine deaminases that act on RNA. Annu. Rev. Biochem, 71, 817–846. [CrossRef] [PubMed] [Google Scholar]
  • Yu, Y., Li, Y., Dong, Y., Wang, X., Li, C., & Jiang, W. (2021). Energy efficiency trade-offs drive nucleotide usage in transcribed regions. Future Virology, 16. doi:https://doi.org/10.2217/fvl-2021-0078 [Google Scholar]
  • Li, Y., Yang, X., Wang, N., Wang, H., Yin, B., Yang, X., & Jiang, W. (2020). Mutation profile of over 4500 SARS-CoV-2 isolations reveals prevalent cytosine-to-uridine deamination on viral RNAs. Future Microbiol, 15(14), 1343–1352. [CrossRef] [PubMed] [Google Scholar]
  • Chen, W., Lu, G., Bork, P., Hu, S., & Lercher, M. (2016). Energy efficiency trade-offs drive nucleotide usage in transcribed regions. Nat. Commun, 7. [Google Scholar]
  • Xia, X. (2020). Extreme Genomic CpG Deficiency in SARS-CoV-2 and Evasion of Host Antiviral Defense. Mol. Biol. Evol, 37(9), 2699–2705. doi:https://doi.org/10.1093/molbev/msaa094 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.