Open Access
Issue
BIO Web Conf.
Volume 80, 2023
4th International Conference on Smart and Innovative Agriculture (ICoSIA 2023)
Article Number 03013
Number of page(s) 9
Section Land and Environmental Management
DOI https://doi.org/10.1051/bioconf/20238003013
Published online 14 December 2023
  • C. Benbrook M, “Trends in glyphosate herbicide use in the United States and globally, ” Environ. Sci. Eur., vol. 28, no. 3, p. 15, 2016, doi: 10.1186/s12302-016-0070-0. [CrossRef] [Google Scholar]
  • R. Mesnage, C. Benbrook, and M. N. Antoniou, “Insight into the confusion over surfactant coformulants in glyphosate-based herbicides, ” Food Chem. Toxicol., vol. 128, no. March, pp. 137–145, 2019, doi 10.1016/j.fct.2019.03.053. [CrossRef] [Google Scholar]
  • K. Gandhi et al., “Exposure risk and environmental impacts of glyphosate : Highlights on the toxicity of herbicide co-formulants, ” Environ. Challenges, vol. 4, no. March, p. 100149, 2021, doi: 10.1016/j.envc.2021.100149. [CrossRef] [Google Scholar]
  • E. Tzanetou and H. Karasali, “Glyphosate Residues in Soil and Air: An Integrated Review,” in Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production, Intech Open, 2020, p. 33. [Google Scholar]
  • A. M. Muskus, M. Krauss, A. Miltner, U. Hamer, and K. M. Nowak, “Science of the Total Environment Effect of temperature, pH and total organic carbon variations on microbial turnover of 13 C 15 3 N-glyphosate in agricultural soil, ” Sci. Total Environ., vol. 658, pp. 697–707, 2019, doi: 10.1016/j.scitotenv.2018.12.195. [CrossRef] [Google Scholar]
  • M. Yunus and N. Adeela, “Environmental Fate and Degradation of Glyphosate in Soil, ” Pertanika J. Sch. Res. Rev., vol. 4, no. 1, pp. 102–116, 2018. [Google Scholar]
  • Herviyanti, A. Maulana, A. L. Lita, T. B. Prasetyo, M. Monikasari, and R. Ryswaldi, “Characteristics of inceptisol ameliorated with rice husk biochar to glyphosate adsorption, ” Sains Tanah, vol. 19, no. 2, pp. 230–240, 2022, doi: 10.20961/stjssa.v19i2.61614. [Google Scholar]
  • M. Sieradzka, C. Kirczuk, I. Kalemba‐rec, A. Mlonka‐mędrala, and A. Magdziarz, “Pyrolysis of Biomass Wastes into Carbon Materials, ” Energies, vol. 15, no. 5, pp. 1–12, 2022, doi: 10.3390/en15051941. [Google Scholar]
  • A. Mutolib, A. Rahmat, E. Triwisesa, H. Hidayat, H. Hariadi, and K. Kurniawan, “Biochar from Agricultural Waste for Soil Amendment Candidate under Different Pyrolysis Temperatures, ” Ejournal.Upi.Edu, vol. 8, no. 2, pp. 243–258, 2023, [Online]. Available: https://ejournal.upi.edu/index.php/ijost/article/vie w/55193. [Google Scholar]
  • K. E. Hall, K. A. Spokas, B. Gamiz, L. Cox, S. K. Papiernik, and W. C. Koskinen, “Glyphosate sorption/desorption on biochars – interactions of physical and chemical processes, ” Pest Manag. Sci., vol. 74, no. 5, pp. 1206–1212, 2018, doi: 10.1002/ps.4530. [CrossRef] [PubMed] [Google Scholar]
  • A. Qureashi et al., “Electrochemical analysis of glyphosate using porous biochar surface corrosive nZVI nanoparticles, ” Nanoscale Adv., vol. 5, no. 3, pp. 742–755, 2023, doi: 10.1039/d2na00610c. [CrossRef] [Google Scholar]
  • Herviyanti, A. Maulana, A. L. Lita, T. B. Prasetyo, and R. Ryswaldi, “Characteristics of biochar methods from bamboo as ameliorant, ” in IOP Conference Series: Earth and Environmental Science, 2022, vol. 959, no. 1, p. 6, doi: 10.1088/1755-1315/959/1/012036. [CrossRef] [Google Scholar]
  • A. Maulana, Herviyanti, T. B. Prasetyo, M. Harianti, and A. L. Lita, “Effect of Pyrolysis Methods on Characteristics of Biochar from Young Coconut Waste as Ameliorant, ” in IOP Conference Series: Earth and Environmental Science, 2022, vol. 959, no. 1, p. 8, doi: 10.1088/1755-1315/959/1/012035. [CrossRef] [Google Scholar]
  • A. L. Lita, A. Maulana, Yulnafatmawita, Gusmini, Herviyanti, and R. Ryswaldi, “Characteristics Biochar from Young Coconut Waste based on Particle Size as Ameliorant, ” in IOP Conference Series: Earth and Environmental Science, 2022, vol. 959, no. 1, p. 6, doi: 10.1088/17551315/959/1/012034. [Google Scholar]
  • Eviati and Sulaeman, Petunjuk Teknis : Analisis Kimia Tanah, Tanaman, Air dan Pupuk, 2nd ed., vol. 148. Bogor, Jawa Barat: BALAI PENELITIAN TANAH, 2012. [Google Scholar]
  • G. Islas, J. A. Rodriguez, L. H. Mendoza , F. Pérez-Moreno, and E. G. Carrillo, “Determination of glyphosate and aminomethylphosphonic acid in soils by HPLC with pre-column derivatization using 1, 2naphthoquinone-4-sulfonate, ” J. Liq. Chromatogr. Relat. Technol., vol. 37, no. 9, pp. 1298–1309, 2014, doi: 10.1080/10826076.2013.789801. [CrossRef] [Google Scholar]
  • B. Singh, M. Camps-Arbestain, and J. Lehmann, Biochar : A Guide To Analytical Methods. Clayton South VIC 3169 Australia: CSIRO, 2017. [Google Scholar]
  • R. L. Glass, “Liquid Chromatographic Determination of Glyphosate in Fortified Soil and Water Samples, ” J. Agric. Food Chem., vol. 31, no. 2, pp. 280–282, 1983, doi: 10.1021/jf00116a023. [CrossRef] [Google Scholar]
  • M. I. G. Bi, A. J. Yapo, A. Dembele, A. S. Ello, and A. Trokourey, “Determination of glyphosate by high-performance liquid chromatography (HPLC) without prior extraction, ” Int. J. Biol. Chem. Sci., vol. 5, no. 1, pp. 314–320, 2011. [CrossRef] [Google Scholar]
  • L. Sun et al., “Determination of glyphosate in soil/sludge by high-performance liquid chromatography, ” J. Chromatogr. A, vol. 1502, pp. 8–13, 2017, doi: 10.1016/j.chroma.2017.04.018. [CrossRef] [Google Scholar]
  • M. Schweizer, K. Brilisauer, R. Triebskorn, K. Forchhammer, and H. R. Köhler, “How glyphosate and its associated acidity affect early development in zebrafish (Danio rerio), ” PeerJ, vol. 2019, no. 6, pp. 1–25, 2019, doi: 10.7717/peerj.7094. [Google Scholar]
  • H. Liu et al., “Interactive effects of microplastics and glyphosate on the dynamics of soil dissolved organic matter in a Chinese loess soil, ” Catena, vol. 182, no. May 2018, p. 104177, 2019, doi 10.1016/j.catena.2019.104177. [CrossRef] [Google Scholar]
  • S. Maccario, M. Lucotte, M. Moingt, É. SamsonBrais, É. Smedbol, and M. Labrecque, “Impact of Soil Characteristics and Weed Management Practices on Glyphosate and AMPA Persistence in Field Crops Soils from the St. Lawrence Lowlands (Quebec, Canada), ” MDPI Agron., vol. 12, no. 5, p. 15, 2022, doi: 10.3390/agronomy12050992. [Google Scholar]
  • M. Wang et al., “Montmorillonites Can Tightly Bind Glyphosate and Paraquat Reducing Toxin Exposures and Toxicity, ” ACS Omega, vol. 4, no. 18, pp. 17702–17713, 2019, doi: 10.1021/acsomega.9b02051. [CrossRef] [PubMed] [Google Scholar]
  • Z. W. Windom, M. Datta, M. M. Huda, M. A. Sabuj, and N. Rai, “Understanding speciation and solvation of glyphosate from first principles simulations, ” J. Mol. Liq., vol. 365, p. 120154, 2022, doi: 10.1016/j.molliq.2022.120154. [CrossRef] [Google Scholar]
  • C. Soares, P. Mateus, F. Fidalgo, and R. Pereira, “Modulation of the non-target phytotoxicity of glyphosate by soil organic matter in tomato (Solanum lycopersicum L.) plants, ” Sci. Hortic. (Amsterdam)., vol. 310, no. March 2022, p. 111773, 2023, doi: 10.1016/j.scienta.2022.111773. [CrossRef] [Google Scholar]
  • X. Wen et al., “Surface charge properties of variable charge soils influenced by environmental factors, ” Appl. Clay Sci., vol. 189, no. 808, p. 105522, 2020, doi 10.1016/j.clay.2020.105522. [CrossRef] [Google Scholar]
  • X. Zhang, S. Li, F. Guo, S. Chao, C. Liu, and G. Zhu, “Experimental Study on Friction Characteristics of Eccentric Cam–Tappet Pairs, ” Neiranji Gongcheng/Chinese Intern. Combust. Engine Eng., vol. 43, no. 5, pp. 84–90, 2022, doi 10.13949/j.cnki.nrjgc.2022.05.012. [Google Scholar]
  • S. O. Duke, J. Lydon, W. C. Koskinen, T. B. Moorman, R. L. Chaney, and R. Hammerschmidt, “Correction to Glyphosate Effects on Plant Mineral Nutrition, Crop Rhizosphere Microbiota, and Plant Disease in Glyphosate-Resistant Crops, ” J. Agric. Food Chem., vol. 61, no. 51, pp. 12745– 12745, 2012, doi 10.1021/jf405497g. [Google Scholar]
  • N. Rampazzo, G. R. Todorovic, A. Mentler, and W. E. H. Blum, “Adsorption of glyphosate and aminomethylphosphonic acid in soils, ” Int. Agrophys, vol. 27, pp. 203–209, 2013, doi: 10.2478/v10247-012-0086-7. [CrossRef] [Google Scholar]
  • M. D. F. Souza et al., “Adsorption mechanisms of atrazine isolated and mixed with glyphosate formulations in soil, ” PLoS One, p. 15, 2020, doi: 10.1371/journal.pone.0242350. [Google Scholar]
  • R. Schmidt et al., “Glyphosate Effects on Earthworms: Active Ingredients vs. Commercial Herbicides at Different Temperature and Soil Organic Matter Levels, ” Agrochemicals, vol. 2, no. 1, pp. 1–16, 2022, doi: 10.3390/agrochemicals2010001. [CrossRef] [Google Scholar]
  • S. Singh, V. Kumar, J. Pal, K. Gill, and S. Datta, “Herbicide Glyphosate : Toxicity and Microbial Degradation, ” Int. J. Environ. Res. Public Health, vol. 17, no. 7519, p. 18, 2020. [Google Scholar]
  • R. C. Pereira, C. S. Antonio, F. Ivashita, A. Paesano, and D. A. M. Zaia, “Interaction between glyphosate and montmorillonite in the presence of artificial seawater, ” Heliyon, vol. 6, p. 10, 2020, doi: 10.1016/j.heliyon.2020.e03532. [Google Scholar]
  • M. Mertens, S. Höss, G. Neumann, J. Afzal, and W. Reichenbecher, “Glyphosate, a chelating agent—relevant for ecological risk assessment, ” Real-Time Imaging VII, vol. 25, pp. 5298–5317, 2018, doi: 10.1117/12.477503. [Google Scholar]
  • R. Kanssery, B. Gairhe, D. Kadyampakeni, O. Batuman, and F. Alferez, “Glyphosate : It’s Environmental Persistence and Impact on Crop Health and Nutrition, ” MDPI Plant, no. Table 1, pp. 1–11, 2019. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.