Open Access
Issue |
BIO Web Conf.
Volume 80, 2023
4th International Conference on Smart and Innovative Agriculture (ICoSIA 2023)
|
|
---|---|---|
Article Number | 06007 | |
Number of page(s) | 8 | |
Section | Smart and Precision Farming | |
DOI | https://doi.org/10.1051/bioconf/20238006007 | |
Published online | 14 December 2023 |
- BPS, “Statistik Kopi Indonesia 2021,” Jakarta, 2021. [Google Scholar]
- P. R. A. B. Toledo, L. Pezza, H. R. Pezza, and A. T. Toci, “Relationship Between the Different Aspects Related to Coffee Quality and Their Volatile Compounds, ” Compr. Rev. Food Sci. Food Saf., vol. 15, no. 4, pp. 705–719, 2016, doi: 10.1111/1541-4337.12205. [CrossRef] [Google Scholar]
- I. Hečimović, A. Belščak-Cvitanović, D. Horžić, and D. Komes, “Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting, ” Food Chem., vol. 129, no. 3, pp. 991–1000, 2011, doi: 10.1016/j.foodchem.2011.05.059. [CrossRef] [Google Scholar]
- N. Liang, S. Sun, C. Zhang, Y. He, and Z. Qiu, “Advances in infrared spectroscopy combined with artificial neural network for the authentication and traceability of food, ” Crit. Rev. Food Sci. Nutr., vol. 62, no. 11, pp. 2963–2984, 2022, doi: 10.1080/10408398.2020.1862045. [CrossRef] [PubMed] [Google Scholar]
- M. R. Baqueta, A. Coqueiro, and V. Patricia, “Brazilian Coffee Blends: A Simple and Fast Method by Near-Infrared Spectroscopy for the Determination of the Sensory Attributes Elicited in Professional Coffee Cupping, ” J. Food Sci., vol. 0, no. 0, 2019, doi: 10.1111/1750-3841.14617. [Google Scholar]
- H. T. M. Tran, C. A. C. Vargas, L. Slade Lee, A. Furtado, H. Smyth, and R. Henry, “Variation in bean morphology and biochemical composition measured in different genetic groups of arabica coffee (Coffea arabica L.), ” Tree Genet. Genomes, vol. 13, no. 3, 2017, doi: 10.1007/s11295-0171138-8. [Google Scholar]
- A. Khoshroo, A. Arefi, A. Masoumiasl, and G.-H. Jowkar, “Classification of Wheat Cultivars Using Image Processing and Artificial Neural Networks., ” Academia, vol. 2, no. 1, pp. 17–22, 2014. [Google Scholar]
- A. Taner, Y. B. Oztekin, A. Tekgüler, H. Sauk, and H. Duran, “Classification of Varieties of Grain Species by Artificial Neural Networks, ” Agronomy, vol. 8, no. 7, 2018, doi: 10.3390/agronomy8070123. [CrossRef] [Google Scholar]
- K. Kiliç, I. H. Boyaci, H. Köksel, and I. Küsmenoglu, “A classification system for beans using computer vision system and artificial neural networks, ” J. Food Eng., vol. 78, no. 3, pp. 897– 904, 2007, doi: 10.1016/j.jfoodeng.2005.11.030. [CrossRef] [Google Scholar]
- M. Meenu, C. Kurade, B. C. Neelapu, S. Kalra, H. S. Ramaswamy, and Y. Yu, “A concise review on food quality assessment using digital image processing, ” Trends Food Sci. Technol., vol. 118, no. PA, pp. 106–124, 2021, doi: 10.1016/j.tifs.2021.09.014. [CrossRef] [Google Scholar]
- V. D. C. Martins et al., “Fraud investigation in commercial coffee by chromatography, ” Food Qual. Saf., vol. 2, no. 3, pp. 121–133, 2018, doi: 10.1093/fqsafe/fyy017. [CrossRef] [Google Scholar]
- C. A. Teixeira Dos Santos, M. Lopo, R. N. M. J. Páscoa, and J. A. Lopes, “A review on the applications of portable near-infrared spectrometers in the agro-food industry, ” Appl. Spectrosc., vol. 67, no. 11, pp. 1215–1233, 2013, doi: 10.1366/13-07228. [CrossRef] [PubMed] [Google Scholar]
- I. Esteban-Díez, J. M. González-Sáiz, C. SáenzGonzález, and C. Pizarro, “Coffee varietal differentiation based on near infrared spectroscopy, ” Talanta, vol. 71, no. 1, pp. 221– 229, 2007, doi: 10.1016/j.talanta.2006.03.052. [CrossRef] [PubMed] [Google Scholar]
- E. K. Kemsley, S. Ruault, and R. H. Wilson, “Discrimination between Coffea arabica and Coffea canephora variant robusta beans using infrared spectroscopy, ” Food Chem., vol. 54, no. 3, pp. 321–326, 1995, doi: https://doi.org/10.1016/0308-8146(95)00030-M. [CrossRef] [Google Scholar]
- W. Zheng, X. Fu, and Y. Ying, “Spectroscopybased food classification with extreme learning machine, ” Chemom. Intell. Lab. Syst., vol. 139, pp. 42–47, 2014, doi: 10.1016/j.chemolab.2014.09.015. [CrossRef] [Google Scholar]
- R. M. Correia et al., “Portable near infrared spectroscopy applied to quality control of Brazilian coffee, ” Talanta, vol. 176, no. April 2017, pp. 59–68, 2018, doi: 10.1016/j.talanta.2017.08.009. [CrossRef] [PubMed] [Google Scholar]
- M. R. Baqueta, A. Coqueiro, P. H. Março, and P. Valderrama, “Multivariate classification for the direct determination of cup profile in coffee blends via handheld near-infrared spectroscopy, ” Talanta, vol. 222, no. July 2020, p. 121526, 2021, doi: 10.1016/j.talanta.2020.121526. [CrossRef] [PubMed] [Google Scholar]
- A. Géron, Hands-on Machine Learning whith Scikit-Learing, Keras and Tensorfow. 2019. [Google Scholar]
- I. Saputra and D. A. Kristiyanti, Machine Learning untuk Pemula. Bandung: Informatika, 2022. [Google Scholar]
- A. Kulkarni, D. Chong, and F. A. Batarseh, “5 Foundations of data imbalance and solutions for a data democracy, ” F. A. Batarseh and R. B. T.-D. D. Yang, Eds. Academic Press, 2020, pp. 83–106. [Google Scholar]
- D. Ballabio and R. Todeschini, “Chapter 4 Multivariate Classification for Qualitative Analysis, ” D.-W. B. T.-I. S. for F. Q. A. and C. Sun, Ed. San Diego: Academic Press, 2009, pp. 83–104. [Google Scholar]
- M. T. Ahad, Y. Li, B. Song, and T. Bhuiyan, “Comparison of CNN-based deep learning architectures for rice diseases classification, ” Artif. Intell. Agric., vol. 9, pp. 22–35, 2023, doi: 10.1016/j.aiia.2023.07.001. [Google Scholar]
- F. Gordillo-Delgado, A. Bedoya, and E. Marín, “Study of the Pigments in Colombian Powdered Coffee Using Photoacoustic Spectroscopy, ” Int. J. Thermophys., vol. 38, no. 1, pp. 1–8, 2017, doi: 10.1007/s10765-016-2144-z. [CrossRef] [Google Scholar]
- N. Farhaty and Muchtaridi, “Tinjauan Kimia dan Aspek Farmakologi Senyawa Asam Klorogenat pada Biji Kopi: Review, ” Farmaka Suplemen, vol. 14, no. 1, pp. 214–227, 2019. [Google Scholar]
- J. S. Ribeiro, M. M. C. Ferreira, and T. J. G. Salva, “Chemometric models for the quantitative descriptive sensory analysis of Arabica coffee beverages using near infrared spectroscopy, ” Talanta, vol. 83, no. 5, pp. 1352–1358, 2011, doi: 10.1016/j.talanta.2010.11.001. [CrossRef] [PubMed] [Google Scholar]
- S. S. N. Chakravartula, R. Moscetti, G. Bedini, M. Nardella, and R. Massantini, “Use of convolutional neural network (CNN) combined with FT-NIR spectroscopy to predict food adulteration: A case study on coffee, ” Food Control, vol. 135, no. January, p. 108816, 2022, doi: 10.1016/j.foodcont.2022.108816. [CrossRef] [Google Scholar]
- H. Zhao, B. Guo, Y. Wei, and B. Zhang, “Near infrared reflectance spectroscopy for determination of the geographical origin of wheat, ” Food Chem., vol. 138, no. 2–3, pp. 1902–1907, 2013, doi: 10.1016/j.foodchem.2012.11.037. [CrossRef] [Google Scholar]
- Y. He, S. Feng, X. Deng, and X. Li, “Study on lossless discrimination of varieties of yogurt using the Visible/NIR-spectroscopy, ” Food Res. Int., vol. 39, no. 6, pp. 645–650, Jul. 2006, doi: 10.1016/j.foodres.2005.12.008. [CrossRef] [Google Scholar]
- J. N. Miller and J. C. Miller, Statistics and Chemometrics for Analytical Chemistry. Essex, England: Pearson Education Limited, 2010. [Google Scholar]
- R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis, 6th edition. Essex, England: Pearson Education Limited, 2014. [Google Scholar]
- S. Balakrishnama and A. Ganapathiraju, “Linear discriminant analysis-a brief tutorial, ” Inst. Signal Inf. Process., vol. 18, pp. 1–8, 1998. [Google Scholar]
- J. Ye and S. Ji, “Discriminant Analysis for Dimensionality Reduction: An Overview of Recent Developments, ” Biometrics Theory, Methods, Appl., pp. 1–19, 2009, doi: 10.1002/9780470522356.ch1. [Google Scholar]
- A. Tharwat, T. Gaber, A. Ibrahim, and A. E. Hassanien, “Linear discriminant analysis: A detailed tutorial, ” AI Commun., vol. 30, no. 2, pp. 169–190, 2017, doi: 10.3233/AIC-170729. [CrossRef] [Google Scholar]
- C. H. Park and H. Park, “A comparison of generalized linear discriminant analysis algorithms, ” Pattern Recognit., vol. 41, no. 3, pp. 1083–1097, 2008, doi: 10.1016/j.patcog.2007.07.022. [CrossRef] [Google Scholar]
- R. Vadivambal and D. S. Jayas, Bio-Imaging: Principles, Techniques, and Applications. Florida: Taylor & Francis Group, LLC, 2016. [Google Scholar]
- H. O. Velesaca, P. L. Suárez, R. Mira, and A. D. Sappa, “Computer vision based food grain classification: A comprehensive survey, ” Comput. Electron. Agric., vol. 187, no. September 2020, 2021, doi: 10.1016/j.compag.2021.106287. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.