Open Access
Issue |
BIO Web Conf.
Volume 85, 2024
3rd International Conference on Research of Agricultural and Food Technologies (I-CRAFT-2023)
|
|
---|---|---|
Article Number | 01013 | |
Number of page(s) | 5 | |
Section | Research of Agricultural and Food Technologies | |
DOI | https://doi.org/10.1051/bioconf/20248501013 | |
Published online | 09 January 2024 |
- Barghchi, M. & Alderson, P. G. Pistachio (Pistacia vera L.). 68–98 (1989) doi:10.1007/978-3-642-61535-1_6. [Google Scholar]
- Mateos, R., Salvador, M. D., Fregapane, G. & Goya, L. Why Should Pistachio Be a Regular Food in Our Diet? Nutrients 14, 3207 (2022). [CrossRef] [PubMed] [Google Scholar]
- Bulló, M., Juanola-Falgarona, M., Hernández-Alonso, P. & Salas-Salvadó, J. Nutrition attributes and health effects of pistachio nuts. British Journal of Nutrition 113, S79–S93 (2015). [CrossRef] [PubMed] [Google Scholar]
- Dreher, M. L. Pistachio nuts: composition and potential health benefits. Nutr Rev 70, 234–240 (2012). [CrossRef] [PubMed] [Google Scholar]
- GEZGİNÇ, Y. & DUMAN, A. D. Antep Fıstığı İşleme Tekniği ve Muhafazasının Kalite Üzerine Etkisi. Gıda 29, (2004). [Google Scholar]
- N. F. Ince et al. Discrimination Between Closed and Open Shell (Turkish) Pistachio Nuts Using Undecimated Wavelet Packet Transform. Biological Engineering 1, 159–172 (2008). [CrossRef] [Google Scholar]
- Chen, A., Nagar, Y., Shoshani, G. & Sharon, R. Deep learning for almond fruit detection at different growth stages for orchards pest management using unmanned aerial vehicles. (Wageningen Academic, 2023). [Google Scholar]
- Ng, D. et al. Benchmarking Object Detection Models with Mummy Nuts Datasets. in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) vol. 13852 LNCS 102–119 (Springer Science and Business Media Deutschland GmbH, 2023). [Google Scholar]
- Sanlin, Z., Liping, Z., Weiqiang, Z., Zhuang, G. & Ziqiang., F. Identification and localization of walnut varieties based on YOLOv5. Journal of Chinese Agricultural Mechanization 43, 167 (2022). [Google Scholar]
- Divyanth, L. G. et al. Detection of Coconut Clusters Based on Occlusion Condition Using Attention-Guided Faster R-CNN for Robotic Harvesting. Foods 2022, Vol. 11, Page 3903 11, 3903 (2022). [Google Scholar]
- Rahimzadeh, M. & Attar, A. Detecting and counting pistachios based on deep learning. Iran Journal of Computer Science 5, 69–81 (2022). [CrossRef] [Google Scholar]
- V, V., K, C. R. & C., R. A. Real Time Object Detection System with YOLO and CNN Models: A Review. (2022). [Google Scholar]
- YOLOv8 . https://github.com/ultralytics/ultralytics. [Google Scholar]
- Chaturvedi, P., Lavingia, K. & Raval, G. Detection of traffic rule violation in University campus using deep learning model. International Journal of System Assurance Engineering and Management 1, 1–19 (2023). [Google Scholar]
- Senior, A., Heigold, G., Ranzato, M. & Yang, K. An empirical study of learning rates in deep neural networks for speech recognition. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings 6724–6728 (2013) doi:10.1109/ICASSP.2013.6638963. [Google Scholar]
- Ruder, S. An overview of gradient descent optimization algorithms. (2016). [Google Scholar]
- Qian, N. On the momentum term in gradient descent learning algorithms. Neural Networks 12, 145–151 (1999). [CrossRef] [PubMed] [Google Scholar]
- Dubey, S. R., Singh, S. K. & Chaudhuri, B. B. Activation functions in deep learning: A comprehensive survey and benchmark. Neurocomputing 503, 92–108 (2022). [CrossRef] [Google Scholar]
- Li, M., Zhang, Z., Lei, L., Wang, X. & Guo, X. Agricultural Greenhouses Detection in High- Resolution Satellite Images Based on Convolutional Neural Networks: Comparison of Faster R-CNN, YOLO v3 and SSD. Sensors 2020, Vol. 20, Page 4938 20, 4938 (2020). [Google Scholar]
- Padilla, R., Netto, S. L. & Da Silva, E. A. B. A Survey on Performance Metrics for Object- Detection Algorithms. International Conference on Systems, Signals, and Image Processing 2020-July, 237–242 (2020). [Google Scholar]
- Karadağ, A. E. & Kılıç, A. Non-destructive robotic sorting of cracked pistachio using deep learning. Postharvest Biol Technol 198, 112229 (2023). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.