Open Access
Issue |
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
|
|
---|---|---|
Article Number | 01001 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/bioconf/20248601001 | |
Published online | 12 January 2024 |
- Accorsi, G.; Verri, G.; Bolognesi, M.; Armaroli, N.; Clementi, C.; Miliani, C.; Romani, A. The exceptional near- infrared luminescence properties of cuprorivaite (Egyptian blue). Chem. Commun. 2009, 3392–3394. [Google Scholar]
- Strambeanu, N.; Demetrovici, L.; Dragos, D.; Lungu, M. Nanoparticles: Definition, Classification, and General Physical Properties. In Nanoparticles' Promises and Risks: Characterization, Manipulation, and Potential Hazards to Humanity and the Environment; Lungu, M., Neculae, A., Bunoiu, M., Biris, C., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 3–8. [Google Scholar]
- Jeevanandam, J.; Barhoum, A.; Chan, Y.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity, and regulations. Beilstein J. Nanotechnol. 2018, 9, 1050-1074. [CrossRef] [Google Scholar]
- Sengul, A.B.; Asmatulu, E. Toxicity of metal and metal oxide nanoparticles: A review. Environ. Chem. Lett. 2020. [Google Scholar]
- Hussain, I.; Singh, N.B.; Singh, A.; Singh, H.; Singh, S.C. Green synthesis of nanoparticles and its potential application. Biotechnol. Lett. 2016, 38, 545–560 [CrossRef] [PubMed] [Google Scholar]
- Song, Y.; Zhou, T.; Liu, Q.; Liu, Z.; Li, D. Nanoparticle and microorganism detection with a side-micron- orifice- based resistive pulse sensor. Analyst 2020. [Google Scholar]
- 0. Rajan, R.; Chandran, K.; Harper, S.L. Plant extract synthesized silver nanoparticles: An ongoing source of novel biocompatible materials. Ind. Crops Prod. 2015, 70, 356–373. [CrossRef] [Google Scholar]
- Brahmachari et al. Organic and Medicinal Chemistry Letters (2014) 4:18 [CrossRef] [PubMed] [Google Scholar]
- Dong, H.; Li, L.; Wang, Y.; Ning, Q.; Wang, B.; Zeng, G. Aging of zero-valent iron-based nanoparticles in an aqueous environment and the consequent effects on their reactivity and toxicity. Water Environ. Res. 2020, 92, 646–661 [CrossRef] [PubMed] [Google Scholar]
- Tada, S.; Fujiwara, K.; Yamamura, T.; Nishijima, M.; Uchida, S.; Kikuchi, R. Flame spray pyrolysis makes highly loaded Cu nanoparticles on ZrO2 for CO2-to-methanol hydrogenation. Chem. Eng. J. 2020, 381, 122750 [CrossRef] [Google Scholar]
- Nowack, B. Evaluation of environmental exposure models for engineered nanomaterials in a regulatory context. NanoImpact 2017, 8, 38–47. [CrossRef] [Google Scholar]
- Mitrano, D.M.; Motellier, S.; Clavaguera, S.; Nowack, B. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environ. Int. 2015, 77, 132–147. [CrossRef] [Google Scholar]
- Rajkovic, S.; Bornhöft, N.A.; van der Weijden, R.; Nowack, B.; Adam, V. Dynamic probabilistic material flow analysis of engineered nanomaterials in European waste treatment systems. [Google Scholar]
- Antonia Praetorius,a Nathalie Tufenkji,b Kai-Uwe Goss,c Martin Scheringer,a Frank von der Kammerd and Menachem Elimeleche : Environ. Sci.: Nano, 2014, 1, 317 [Google Scholar]
- Sayed Mohammad Taghavi,1 Mahdiye Momenpour,2 Maryam Azarian,3 Mohammad Ahmadian,4 Faramarz Souri,5 Sayed Ali Taghavi,6 Marzieh Sadeghain,7 and Mohsen Karchani8,92013 Oct-Dec; 5(4): 706–712. [Google Scholar]
- Prabhakar, P. K., et al. “Formulation and evaluation of polyherbal anti-acne combination by using in-vitro model.” Biointerface Res. Appl. Chem 10.1 (2020): 4747-4751. [Google Scholar]
- Chang, Y.-N.; Zhang, M.; Xia, L.; Zhang, J.; Xing, G. The Toxic Effects and Mechanisms of CuO and ZnO Nanoparticles. Nature 2012, 5, 2850–2871. [Google Scholar]
- Samiei, F.; Shirazi, F.H.; Naserzadeh, P.; Dousti, F.; Seydi, E.; Pourahmad, J. Correction to: Toxicity of multiwall carbon nanotubes inhalation on the brain of rats. Environ. Sci. Pollut. Res. Int. 2020, 27, 29699. [CrossRef] [PubMed] [Google Scholar]
- Mottier, A.; Mouchet, F.; Pinelli, É.; Gauthier, L.; Flahaut, E. Environmental impact of engineered carbon nanoparticles: From releases to effects on the aquatic biota. Curr. Opin. Biotechnol. 2017, 46, 1–6 [CrossRef] [Google Scholar]
- Frenk, S.; Ben-Moshe, T.; Dror, I.; Berkowitz, B.; Minz, D. Effect of Metal Oxide Nanoparticles on Microbial Community Structure and Function in Two Different Soil Types. PLoS ONE 2013, 8, 84441. [Google Scholar]
- E. Lapied, E. Moudilou, J.-M. Exbrayat, D. H. Oughton, and E. J. Joner, “Silver nanoparticle exposure causes apoptotic response in the earthworm Lumbricus terrestris (Oligochaeta),” Nanomedicine, vol. 5, no. 6, pp. 975-984, 2010. [CrossRef] [PubMed] [Google Scholar]
- Xia, B.; Chen, B.; Sun, X.; Qu, K.; Ma, F.; Du, M. Interaction of TiO2 nanoparticles with the marine microalga Nitzschia closterium: Growth inhibition, oxidative stress and internalization. Sci. Total Environ. 2015, 508, 525–533 [CrossRef] [Google Scholar]
- K.Syamala Devi, A. Alakanandana and V.Vijaya Lakshmi, Vol: I. Issue LVIV, January 2018 ISSN (Print): 2320-5504. [Google Scholar]
- Thakur, M.; Gupta, H.; Singh, D.; Mohanty, I.R.; Maheswari, U.; Vanage, G.; Joshi, D.S. Histopathological and ultrastructural effects of nanoparticles on rat testis following 90 days (Chronic study) of repeated oral administration. J. Nanobiotechnology. 2014, 12, 42. [CrossRef] [Google Scholar]
- Usha Rani, P.; Rajasekharreddy, P. Green synthesis of silver-protein (core-shell) nanoparticles using Piper betle L. leaf extract and its ecotoxicological studies on Daphnia Magna. Colloids Surface A Physicochem. Eng. Aspects 2011, 389, 188–194. [CrossRef] [Google Scholar]
- Lehner, R.; Weder, C.; Petri-Fink, A.; Rothen-Rutishauser, B. Emergence of Nanoplastic in the Environment and Possible Impact on Human Health. Environ. Sci. Technol. 2019, 53, 1748–1765. [CrossRef] [PubMed] [Google Scholar]
- Prabhakar, P. K. (2020). Bacterial siderophores and their potential applications: a review. Current Molecular Pharmacology, 13(4), 295-305. [CrossRef] [PubMed] [Google Scholar]
- Zhang, L.; Mazouzi, Y.; Salmain, M.; Liedberg, B.; Boujday, S. Antibody-Gold Nanoparticle Bioconjugates for Biosensors: Synthesis, Characterization and Selected Applications. Biosens. Bioelectron. 2020, 112370. [Google Scholar]
- Cox, A.; Venkatachalam, P.; Sahi, S.; Sharma, N. Reprint of Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research. Plant Physiol. Biochem. PPB 2017, 110, 33–49. [Google Scholar]
- Dasgupta, N.; Ranjan, S.; Mundekkad, D.; Ramalingam, C.; Shanker, R.; Kumar, A. Nanotechnology in agro-food: From field to plate. Food Res. Int. 2015, 69, 381–400 [CrossRef] [Google Scholar]
- Awad, M.A.; Eisa, N.E.; Virk, P.; Hendi, A.A.; Ortashi, K.M.O.O.; Mahgoub, A.S.A.; Elobeid, M.A.; Eissa, F.Z. Green synthesis of gold nanoparticles: Preparation, characterization, cytotoxicity, and anti-bacterial activities. Mater. Lett. 2019, 256, 126608. [CrossRef] [Google Scholar]
- Takeuchi, M.T.; Kojima, M.; Luetzow, M. State of the art on the initiatives and activities relevant to risk assessment and risk management of nanotechnologies in the food and agriculture sectors. Food Res. Int. 2014, 64, 976–981. [CrossRef] [Google Scholar]
- Marchiol, L.; Mattiello, A.; Poš´ci´c, F.; Giordano, C.; Musetti, R. In vivo synthesis of nanomaterials in plants: Location of silver nanoparticles and plant metabolism. Nanoscale Res. Lett. 2014, 9, 101. [CrossRef] [Google Scholar]
- In Agricultural Nanobiotechnology: Modern Agriculture for a Sustainable Future; López-Valdez, F., Fernández-Luqueño, F., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 3–16. ISBN 978-3-319-96719-6. [Google Scholar]
- Chaudhry, N.; Dwivedi, S.; Chaudhry, V.; Singh, A.; Saquib, Q.; Azam, A.; Musarrat, J. Bio-inspired nanomaterials in agriculture and food: Current status, foreseen applications and challenges. Microb. Pathog. 2018, 123, 196–200. [CrossRef] [Google Scholar]
- Prabhakar, Pranav Kumar, and Jyoti Lakhanpal. “Recent advances in the nucleic acid-based diagnostic tool for coronavirus.” Molecular Biology Reports 47 (2020): 9033-9041. [CrossRef] [PubMed] [Google Scholar]
- Ansari, S.; Ficiarà, E.; Ruffinatti, F.; Stura, I.; Argenziano, M.; Abollino, O.; Cavalli, R.; Guiot, C.; D’Agata, F. Magnetic Iron Oxide Nanoparticles: Synthesis, Characterization, and Functionalization for Biomedical Applications in the Central Nervous System. Materials 2019, 12, 465. [CrossRef] [PubMed] [Google Scholar]
- Mohammed, L.; Gomaa, H.G.; Ragab, D.; Zhu, J. Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology 2017, 30, 1–14. [CrossRef] [Google Scholar]
- Singh, N.B.; Nagpal, G.; Agrawal, S. Rachna Water purification by using Adsorbents: A Review. Environ. Technol. Innov. 2018, 11, 187–240. [CrossRef] [Google Scholar]
- Nanoparticle Sensor Array. ACS Sens. 2020. 153. Zhu, C.; Zhao, Q.; Meng, G.; Wang, X.; Hu, X.; Han, F.; Lei, Y. Silver nanoparticle-assembled micro-bowl arrays for sensitive SERS detection of pesticide residue. Nanotechnology 2020, 31, 205303. [Google Scholar]
- Yuvaraj, N., Srihari, K., Dhiman, G., Somasundaram, K., Sharma, A., Rajeskannan, S.M.G.S.M.A., Soni, M., Gaba, G.S., AlZain, M.A. and Masud, M., 2021. Nature-inspired-based approach for automated cyberbullying classification on multimedia social networking. Mathematical Problems in Engineering, 2021, pp.1-12. [Google Scholar]
- Mahesh, K.V., Singh, S.K. and Gulati, M., 2014. A comparative study of top-down and bottom-up approaches for the preparation of nanosuspensions of glipizide. Powder technology, 256, pp.436-449. [CrossRef] [Google Scholar]
- Kour, D., Kaur, T., Devi, R., Yadav, A., Singh, M., Joshi, D., Singh, J., Suyal, D.C., Kumar, A., Rajput, V.D. and Yadav, A.N., 2021. Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environmental Science and Pollution Research, 28, pp.24917-24939. [CrossRef] [PubMed] [Google Scholar]
- Ren, X., Li, C., Ma, X., Chen, F., Wang, H., Sharma, A., Gaba, G.S. and Masud, M., 2021. Design of multi- information fusion based intelligent electrical fire detection system for green buildings. Sustainability, 13(6), p.3405. [CrossRef] [Google Scholar]
- Singh, G., Pruncu, C.I., Gupta, M.K., Mia, M., Khan, A.M., Jamil, M., Pimenov, D.Y., Sen, B. and Sharma, V.S., 2019. Investigations of machining characteristics in the upgraded MQL-assisted turning of pure titanium alloys using evolutionary algorithms. Materials, 12(6), p.999. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.