Open Access
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
Article Number 01003
Number of page(s) 7
Published online 12 January 2024
  • J. Sweeney, “Healthcare informatics,” Online J. Nurs. Informatics, vol. 21, no. 1, 2017, doi: 10.1213/01.ane.0000228307.38164.5d. [Google Scholar]
  • J. E. Black, J. K. Kueper, and T. S. Williamson, “An introduction to machine learning for classification and prediction,” Fam. Pract., vol. 40, no. 1, pp. 200–204, 2023, doi: 10.1093/fampra/cmac104. [CrossRef] [Google Scholar]
  • C. O. E. Fficiency, H. B. Mcmahan, F. X. Yu, A. T. Suresh, D. Bacon, and P. Richt, “F l : s i c e,” pp. 1–10, 2017. [Google Scholar]
  • P. Kairouz et al., “Advances and Open Problems in Federated Learning,” Dec. 2019, [Online]. Available: [Google Scholar]
  • N. Rana and H. Marwaha, “Role of federated learning in healthcare systems: A survey,” Math. Found. Comput., vol. 0, no. 0, pp. 0–0, 2023, doi: 10.3934/mfc.2023023. [Google Scholar]
  • S. Reddi et al., “Adaptive Federated Optimization,” no. 2, pp. 1–38, 2020, [Online]. Available: [Google Scholar]
  • “PPML Series #2 - Federated Optimization Algorithms - FedSGD and FedAvg | Shreyansh Singh.” (accessed Apr. 28, 2023). [Google Scholar]
  • H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khazaeni, “Federated Learning with Matched Averaging,” pp. 1–16, 2020, [Online]. Available: [Google Scholar]
  • L. Hu, H. Yan, L. Li, Z. Pan, X. Liu, and Z. Zhang, “MHAT: An efficient model-heterogenous aggregation training scheme for federated learning,” Inf. Sci. (Ny)., vol. 560, pp. 493–503, 2021, doi: 10.1016/j.ins.2021.01.046. [CrossRef] [Google Scholar]
  • X. Wu, Z. Liang, and J. Wang, “Fedmed: A federated learning framework for language modeling,” Sensors (Switzerland), vol. 20, no. 14, pp. 1–17, 2020, doi: 10.3390/s20144048. [Google Scholar]
  • X. Wu, F. Huang, Z. Hu, and H. Huang, “Faster Adaptive Federated Learning,” 2022, [Online]. Available: [Google Scholar]
  • M. M. Rahman, D. Kundu, S. A. Suha, U. R. Siddiqi, and S. K. Dey, “Hospital patients’ length of stay prediction: A federated learning approach,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 10, pp. 7874–7884, 2022, doi: 10.1016/j.jksuci.2022.07.006. [Google Scholar]
  • Y. Liu and D. Bi, “Quantitative risk analysis of treatment plans for patients with tumor by mining historical similar patients from electronic health records using federated learning,” Risk Anal., pp. 1–28, 2023, doi: 10.1111/risa.14124. [Google Scholar]
  • B. L. Y. Agbley et al., “Multimodal Melanoma Detection with Federated Learning,” 2021 18th Int. Comput. Conf. Wavelet Act. Media Technol. Inf. Process. ICCWAMTIP 2021, pp. 238–244, 2021, doi: 10.1109/ICCWAMTIP53232.2021.9674116. [Google Scholar]
  • M. M. Yaqoob, M. Nazir, M. A. Khan, S. Qureshi, and A. Al-Rasheed, “Hybrid Classifier-Based Federated Learning in Health Service Providers for Cardiovascular Disease Prediction,” Appl. Sci., vol. 13, no. 3, 2023, doi: 10.3390/app13031911. [CrossRef] [Google Scholar]
  • D. G. Nair, J. J. Nair, K. Jaideep Reddy, and C. V. Aswartha Narayana, “A privacy preserving diagnostic collaboration framework for facial paralysis using federated learning,” Eng. Appl. Artif. Intell., vol. 116, no. February, p. 105476, 2022, doi: 10.1016/j.engappai.2022.105476. [CrossRef] [Google Scholar]
  • H. Shamseddine, S. Otoum, and A. Mourad, “A Federated Learning Scheme for Neuro-developmental Disorders: Multi-Aspect ASD Detection,” pp. 1–11, 2022, [Online]. Available: [Google Scholar]
  • Y. Su, C. Huang, W. Zhu, X. Lyu, and F. Ji, “Multi-party Diabetes Mellitus risk prediction based on secure federated learning,” Biomed. Signal Process. Control, vol. 85, no. November 2022, p. 104881, 2023, doi: 10.1016/j.bspc.2023.104881. [CrossRef] [Google Scholar]
  • A. Raza, K. P. Tran, L. Koehl, and S. Li, “AnoFed: Adaptive anomaly detection for digital health using transformer- based federated learning and support vector data description,” Eng. Appl. Artif. Intell., vol. 121, no. May 2022, p. 106051, 2023, doi: 10.1016/j.engappai.2023.106051. [CrossRef] [Google Scholar]
  • B. Han, R. H. Jhaveri, H. Wang, D. Qiao, and J. Du, “Application of Robust Zero-Watermarking Scheme Based on Federated Learning for Securing the Healthcare Data,” IEEE J. Biomed. Heal. Informatics, vol. 27, no. 2, pp. 804–813, 2023, doi: 10.1109/JBHI.2021.3123936. [CrossRef] [PubMed] [Google Scholar]
  • J. Liu et al., “Federated learning-based vertebral body segmentation,” Eng. Appl. Artif. Intell., vol. 116, no. March, p. 105451, 2022, doi: 10.1016/j.engappai.2022.105451. [CrossRef] [Google Scholar]
  • H. Deng, J. Hu, R. Sharma, M. Mo, and Y. Ren, “NVAS: A non-interactive verifiable federated learning aggregation scheme for COVID-19 based on game theory,” Comput. Commun., vol. 206, no. March, pp. 1–9, 2023, doi: 10.1016/j.comcom.2023.04.026. [CrossRef] [Google Scholar]
  • S. Ahmed, T. M. Groenli, A. Lakhan, Y. Chen, and G. Liang, “A reinforcement federated learning based strategy for urinary disease dataset processing,” Comput. Biol. Med., vol. 163, no. June, p. 107210, 2023, doi: 10.1016/j.compbiomed.2023.107210. [CrossRef] [Google Scholar]
  • H. Kassem, D. Alapatt, P. Mascagni, A. Karargyris, and N. Padoy, “Federated Cycling (FedCy): Semi-supervised Federated Learning of Surgical Phases,” IEEE Trans. Med. Imaging, vol. 42, no. 7, pp. 1920–1931, 2022, doi: 10.1109/TMI.2022.3222126. [Google Scholar]
  • D. Yang, Z. Xu, W. Li, A. Myronenko, and H. R. Roth, “Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19 . The COVID-19 resource centre is hosted on Elsevier Connect, the company ’ s public news and information ,” no. January, 2020. [Google Scholar]
  • T. Borger et al., “Federated learning for violence incident prediction in a simulated cross-institutional psychiatric setting,” Expert Syst. Appl., vol. 199, Aug. 2022, doi: 10.1016/j.eswa.2022.116720. [CrossRef] [Google Scholar]
  • D. H. Mahlool and M. H. Abed, “Distributed brain tumor diagnosis using a federated learning environment,” Bull. Electr. Eng. Informatics, vol. 11, no. 6, pp. 3313–3321, 2022, doi: 10.11591/eei.v11i6.4131. [CrossRef] [Google Scholar]
  • A. Bhattacharya, R. Rana, V. Udutalapally, and D. Das, “CoviFL: Edge-Assisted Federated Learning for Remote COVID-19 Detection in an AIoMT Framework,” Proc. - IEEE Symp. Comput. Commun., vol. 2022-June, pp. 0–5, 2022, doi: 10.1109/ISCC55528.2022.9912999. [Google Scholar]
  • A. Kareem, H. Liu, and V. Velisavljevic, “A federated learning framework for pneumonia image detection using distributed data,” Healthc. Anal., vol. 4, no. May, p. 100204, 2023, doi: 10.1016/ [CrossRef] [Google Scholar]
  • A. M. Ismael and A. Şengür, “Deep learning approaches for COVID-19 detection based on chest X-ray images,” Expert Syst. Appl., vol. 164, no. March 2020, 2021, doi: 10.1016/j.eswa.2020.114054. [CrossRef] [Google Scholar]
  • I. Feki, S. Ammar, Y. Kessentini, and K. Muhammad, “Federated learning for COVID-19 screening from Chest X-ray images,” Appl. Soft Comput., vol. 106, p. 107330, 2021, doi: 10.1016/j.asoc.2021.107330. [CrossRef] [Google Scholar]
  • S. U. Khan, N. Islam, Z. Jan, I. Ud Din, and J. J. P. C. Rodrigues, “A novel deep learning based framework for the detection and classification of breast cancer using transfer learning,” Pattern Recognit. Lett., vol. 125, pp. 1–6, 2019, doi: 10.1016/j.patrec.2019.03.022. [CrossRef] [Google Scholar]
  • Y. N. Tan, V. P. Tinh, P. D. Lam, N. H. Nam, and T. A. Khoa, “A Transfer Learning Approach to Breast Cancer Classification in a Federated Learning Framework,” IEEE Access, vol. 11, no. February, pp. 27462–27476, 2023, doi: 10.1109/ACCESS.2023.3257562. [CrossRef] [Google Scholar]
  • N. Ahmad and K. Dimililer, “Brain Tumor Detection Using Convolutional Neural Network,” ISMSIT 2022 - 6th Int. Symp. Multidiscip. Stud. Innov. Technol. Proc., vol. 2019, no. Icasert, pp. 1032–1037, 2022, doi: 10.1109/ISMSIT56059.2022.9932741. [CrossRef] [Google Scholar]
  • M. Islam, M. T. Reza, M. Kaosar, and M. Z. Parvez, “Effectiveness of Federated Learning and CNN Ensemble Architectures for Identifying Brain Tumors Using MRI Images,” Neural Process. Lett., vol. 55, no. 4, pp. 3779–3809, 2022, doi: 10.1007/s11063-022-11014-1. [Google Scholar]
  • I. Technology, P. Analysis, and A. N. Networks, “Pr ep rin er r rin ep t n Pr er ed,” vol. 3, no. 3, pp. 17–23, 2019. [Google Scholar]
  • A. Heidari, D. Javaheri, S. Toumaj, N. J. Navimipour, M. Rezaei, and M. Unal, “A new lung cancer detection method based on the chest CT images using Federated Learning and blockchain systems,” Artif. Intell. Med., vol. 141, no. May, p. 102572, 2023, doi: 10.1016/j.artmed.2023.102572. [CrossRef] [Google Scholar]
  • G. Petmezas et al., “Automated Lung Sound Classification Using a Hybrid CNN-LSTM Network and Focal Loss Function,” Sensors, vol. 22, no. 3, 2022, doi: 10.3390/s22031232. [CrossRef] [Google Scholar]
  • R. B. Lukmanto, Suharjito, A. Nugroho, and H. Akbar, “Early detection of diabetes mellitus using feature selection and fuzzy support vector machine,” Procedia Comput. Sci., vol. 157, pp. 46–54, 2019, doi: 10.1016/j.procs.2019.08.140. [CrossRef] [Google Scholar]
  • B. Dolo, F. Loukil, and K. Boukadi, “Early Detection of Diabetes Mellitus Using Differentially Private SGD in Federated Learning,” Proc. IEEE/ACS Int. Conf. Comput. Syst. Appl. AICCSA, vol. 2022-December, pp. 1–8, 2022, doi: 10.1109/AICCSA56895.2022.10017908. [Google Scholar]
  • J. Sachdeva, V. Kumar, I. Gupta, N. Khandelwal, and C. K. Ahuja, “Multiclass brain tumor classification using GA- SVM,” Proc. - 4th Int. Conf. Dev. eSystems Eng. DeSE 2011, pp. 182–187, 2011, doi: 10.1109/DeSE.2011.31. [Google Scholar]
  • M. Scarpiniti, S. Sarv Ahrabi, E. Baccarelli, L. Piazzo, and A. Momenzadeh, “A novel unsupervised approach based on the hidden features of Deep Denoising Autoencoders for COVID-19 disease detection,” Expert Syst. Appl., vol. 192, no. April 2021, p. 116366, 2022, doi: 10.1016/j.eswa.2021.116366. [CrossRef] [Google Scholar]
  • N. Rashid, M. A. F. Hossain, M. Ali, M. Islam Sukanya, T. Mahmud, and S. A. Fattah, “AutoCovNet: Unsupervised feature learning using autoencoder and feature merging for detection of COVID-19 from chest X-ray images,” Biocybern. Biomed. Eng., vol. 41, no. 4, pp. 1685–1701, 2021, doi: 10.1016/j.bbe.2021.09.004. [CrossRef] [Google Scholar]
  • D. A. Reddy, S. Roy, S. Kumar, and R. Tripathi, “A Scheme for Effective Skin Disease Detection using Optimized Region Growing Segmentation and Autoencoder based Classification,” Procedia Comput. Sci., vol. 218, pp. 274–282, 2023, doi: 10.1016/j.procs.2023.01.009. [CrossRef] [Google Scholar]
  • B. Pfitzner, N. Steckhan, and B. Arnrich, “Federated Learning in a Medical Context: A Systematic Literature Review,” ACM Trans. Internet Technol., vol. 21, no. 2, 2021, doi: 10.1145/3412357. [CrossRef] [Google Scholar]
  • D. Metcalf, S. T. J. Milliard, M. Gomez, and M. Schwartz, “Wearables and the internet of things for health: Wearable, interconnected devices promise more efficient and comprehensive health care,” IEEE Pulse, vol. 7, no. 5, pp. 35–39, 2016, doi: 10.1109/MPUL.2016.2592260. [CrossRef] [Google Scholar]
  • M. Shaheen, M. S. Farooq, T. Umer, and B. S. Kim, “Applications of Federated Learning; Taxonomy, Challenges, and Research Trends,” Electron., vol. 11, no. 4, Feb. 2022, doi: 10.3390/electronics11040670. [Google Scholar]
  • C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A survey on federated learning,” Knowledge-Based Syst., vol. 216, p. 106775, 2021, doi: 10.1016/j.knosys.2021.106775. [CrossRef] [Google Scholar]
  • G. Long, M. Xie, T. Shen, T. Zhou, X. Wang, and J. Jiang, “Multi-center federated learning: clients clustering for better personalization,” World Wide Web, vol. 26, no. 1, pp. 481–500, 2023, doi: 10.1007/s11280-022-01046-x. [CrossRef] [Google Scholar]
  • C. Thapa, P. C. M. Arachchige, S. Camtepe, and L. Sun, “SplitFed: When Federated Learning Meets Split Learning,” Proc. 36th AAAI Conf. Artif. Intell. AAAI 2022, vol. 36, pp. 8485–8493, 2022, doi: 10.1609/aaai.v36i8.20825. [Google Scholar]
  • H. Ren, D. Anicic, and T. A. Runkler, “TinyReptile : TinyML with Federated Meta-Learning”. [Google Scholar]
  • L. Wulfert, C. Wiede, and A. Grabmaier, “TinyFL : On-Device Training, Communication And Aggregation On A Microcontroller For Federated Learning,” 2023 21st IEEE Interreg. NEWCAS Conf., pp. 1–5, doi: 10.1109/NEWCAS57931.2023.10198040. [Google Scholar]
  • Yuvaraj, N., Srihari, K., Dhiman, G., Somasundaram, K., Sharma, A., Rajeskannan, S.M.G.S.M.A., Soni, M., Gaba, G.S., AlZain, M.A. and Masud, M., 2021. Nature-inspired-based approach for automated cyberbullying classification on multimedia social networking. Mathematical Problems in Engineering, 2021, pp.1-12. [Google Scholar]
  • Mahesh, K.V., Singh, S.K. and Gulati, M., 2014. A comparative study of top-down and bottom-up approaches for the preparation of nanosuspensions of glipizide. Powder technology, 256, pp.436-449. [CrossRef] [Google Scholar]
  • Kour, D., Kaur, T., Devi, R., Yadav, A., Singh, M., Joshi, D., Singh, J., Suyal, D.C., Kumar, A., Rajput, V.D. and Yadav, A.N., 2021. Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environmental Science and Pollution Research, 28, pp.24917-24939. [CrossRef] [PubMed] [Google Scholar]
  • Ren, X., Li, C., Ma, X., Chen, F., Wang, H., Sharma, A., Gaba, G.S. and Masud, M., 2021. Design of multi- information fusion based intelligent electrical fire detection system for green buildings. Sustainability, 13(6), p.3405. [Google Scholar]
  • Singh, G., Pruncu, C.I., Gupta, M.K., Mia, M., Khan, A.M., Jamil, M., Pimenov, D.Y., Sen, B. and Sharma, V.S., 2019. Investigations of machining characteristics in the upgraded MQL-assisted turning of pure titanium alloys using evolutionary algorithms. Materials, 12(6), p.999. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.