Open Access
Issue
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
Article Number 01027
Number of page(s) 12
DOI https://doi.org/10.1051/bioconf/20248601027
Published online 12 January 2024
  • Afonso, C.A.M., and Crespo, J.G. (2005) in Green Separation Processes, Fundamentals and Applications, Wiley-VCH Verlag GmbH, Weinheim. [CrossRef] [Google Scholar]
  • Alfonsi, K., Colberg, J., Dunn, P.J., Fevig, T., Jennings, S., Johnson, T.A., Kleine, H.P., Knight, C., Nagy, M.A., Perry, D.A., Stefaniak, M. (2008) Green Chem., 10: 31-36. [CrossRef] [Google Scholar]
  • Anastas, P.T., (2002) in Clean Solvent Alternative Media for Chemical Reactions and Processing, ACS Symposium series 819, Washington, DC, ch.1 ; [Google Scholar]
  • DeSimone, J.M., (2002), Science, 297, 799; [CrossRef] [PubMed] [Google Scholar]
  • Sheldon, R.A., (2005) Green Chem., 7, 267 ; [CrossRef] [Google Scholar]
  • Li, C.-J. and Trost, B., (2008), Proc. Natl. Acad. Sci. U. S. A., 105, 13197. [CrossRef] [PubMed] [Google Scholar]
  • Anastas, P.T., Warner, J.C., (1998) Green Chemistry: Theory and Practice. Oxford University Press, New York. [Google Scholar]
  • Banitaba, S.H., Safari, J., Khalili, S.D., (2013) Ultrasound promoted one-pot synthesis of 2-amino-4,8- dihydropyrano [3,2-b]pyran-3-carbonitrile scaffolds in aqueous media: A complementary ‘green chemistry’ tool to organic synthesis. Ultrason. Sonochem., 20: 401–407. [CrossRef] [Google Scholar]
  • Belgacem, M.N., and Gandini, A., (2008) in Monomers, Polymers and Composites from Renewable Resources, Elsevier Ltd., Oxford.; [Google Scholar]
  • Gandini, A., (2008) Macromolecules, 41, 9491; [CrossRef] [Google Scholar]
  • Meier, M.A.R., Metzger, J.O. and Schubert, U.S., (2007) Chem. Soc. Rev., 36, 1788; [CrossRef] [PubMed] [Google Scholar]
  • Tokiwa, Y. and Calabia, B.P., (2008) Can. J. Chem., 86, 548. [CrossRef] [Google Scholar]
  • Bianca, A.M., Barbara, S.R., Eliane, G.T., Ana, C.K., Herida, R.N.S., (2019) Evolution of green chemistry and its multidimensional impacts: A review. Saudi Pharmaceutical Journal, 27: 1–8. https://doi.org/10.1016/j.jsps.2018.07.011. [CrossRef] [Google Scholar]
  • Boethling, R.S., Sommer, E. and DiFiore, D. (2007) Chem. Rev., 107, 2207. [CrossRef] [PubMed] [Google Scholar]
  • Breslow, R., (1998) Green Chem., 225; [Google Scholar]
  • Li, C.J. and Chan, T.H., (2007) in Comprehensive Organic Reactions in Aqueous Media, ed. John Wiley & Sons, Inc., Hoboken, New Jersey, 2nd edn.; [CrossRef] [Google Scholar]
  • Kerton, F.M., (2009) in Alternative Solvents for Green Chemistry, RSC Green Chemistry Book Series, Royal Society of Chemistry, ch. 3: 44; [CrossRef] [Google Scholar]
  • Li, C.J., and Chen, L., (2006) Chem. Soc. Rev., 35: 68; [CrossRef] [PubMed] [Google Scholar]
  • Li, C.J., (2005) Chem. Rev., 105: 3095. [CrossRef] [PubMed] [Google Scholar]
  • Cannon, A.S. and Warner, J.C., Cryst (2002) Growth Des., 2, 255; [CrossRef] [Google Scholar]
  • Warner, J.C., (2006) Pure Appl. Chem., 78, 2035; [CrossRef] [Google Scholar]
  • Trakhtenberg, S. and Warner, J.C., (2007) Chem. Rev., 107, 2174. [CrossRef] [PubMed] [Google Scholar]
  • Capello, C., Fischer, U. and Hungerbuhler, K., (2007) Green Chem., 9: 927–934; [CrossRef] [Google Scholar]
  • Clark, J.H. and Tavener, S.T., (2007) Org. Process Res. Dev., 11: 149; [CrossRef] [Google Scholar]
  • Jessop, P.G., (2011) Green Chem., 13: 1391–1398; [CrossRef] [Google Scholar]
  • Ashcroft, C.P., Dunn, P.J., Hayler, J.D. and Wells, A.S., (2015) Org. Process Res. Dev., 19: 740–747. [CrossRef] [Google Scholar]
  • Connon, S.J., (2006) Chiral phosphoric acids: powerful organocatalysts for asymmetric addition reactions to imines. Angew Chem Int Ed., 45, 3909-12; [CrossRef] [PubMed] [Google Scholar]
  • Terada, M., (2008) Binaphthol-derived phosphoric acid as a versatile catalyst for enantioselective carbon carbon bond forming reactions. Chem Commun, 35, 4097-112; [Google Scholar]
  • Kampen, D., Reisinger, C.M., List, B., (2010) Chiral bronsted acids for asymmetric organocatalysis. Top Curr Chem, 291, 395-456. [CrossRef] [PubMed] [Google Scholar]
  • Constable, D.J.C., Curzons, A.D., Cunningham, V.L., (2002) Metrics to ‘green’ chemistry—Which are the best? Green Chem., 4, 521–527. [CrossRef] [Google Scholar]
  • Curzons, A.D., Constable, D.J.C., Mortimer, D.N. and Cunningham, V.L., (2001), Green Chem., 3, 1; [CrossRef] [Google Scholar]
  • Constable, D.J.C., Curzons, A.D., Cunningham, V.L., (2002) Metrics to ‘green’ chemistry—Which are the best? Green Chem., 4, 521–527. [CrossRef] [Google Scholar]
  • Denis, P., Andy, W., John, H., Helen, S., Robert McElroy, C., Sarah, A.S. and Peter, J.D., (2016) CHEM21 selection guide of classical- and less classical-solvents. The Royal Society of Chemistry; Green Chem., 18: 288-296. [Google Scholar]
  • Dunn, P.J., Galvin, S., Hettenbach, K., (2004) The development of an environmentally benign synthesis of sildenafil citrate (Viagra™) and its assessment by Green Chemistry metrics. Green Chem., 6, 43–48. [CrossRef] [Google Scholar]
  • Eissen, M., Metzger, J.O., (2002) Environmental Performance Metrics for Daily Use in Synthetic Chemistry. Chem. Eur. J., 8, 3580–3585. [CrossRef] [Google Scholar]
  • Enders, D., Breuer, K., Raabe, G., Runsink, J., Teles, J.H., Melder, J.P., Ebel, K., Brode, S., (1995) Preparation, structure, and reactivity of 1,3,4-Triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene, a new stable carbene. Angew Chem, Int Ed Engl., 34, 1021-3. [CrossRef] [Google Scholar]
  • Epsztein, R. and Goff, N.L., (1985) Tetrahedron, 41, 5347. [CrossRef] [Google Scholar]
  • Gasteiger, H.A. and Markovic, N.M., (2009) Science, 324: 48. [CrossRef] [PubMed] [Google Scholar]
  • GREEN CHEMISTRY: An Introductory Text by Mike Lancaster. [Google Scholar]
  • Grubbs, R.H., (2004) Tetrahedron, 60, 7117. [CrossRef] [Google Scholar]
  • Guardia, M.D., Armenta, S., (2012) Anal. Bioanal. Chem. 404, 625–626. [CrossRef] [PubMed] [Google Scholar]
  • Gunnes, S., Neugebauer, H. and Sariciftci, N.S., (2007) Chem. Rev., 107: 1324; [CrossRef] [PubMed] [Google Scholar]
  • Bredas, J.L., Norton, J.E., Cornil, J. and Coropceanu, V., (2009) Acc. Chem. Res. https://doi.org/10.1021/ar900099h. [Google Scholar]
  • Horvath, I.T., (2003) in Encyclopedia of Catalysis, Wiley-VCH Verlag GmbH, Weinheim; [Google Scholar]
  • Cornils, B., Hermann, W.A., Muhler, M. and Wong, C.H., (2007) in Catalysis from A to Z, Wiley-VCH Verlag GmbH, Weinheim. [Google Scholar]
  • Jimenez-Gonzalez, C., Ponder, C.S., Broxterman, Q.B. and Manley, J.B., (2011) Org. Process Res. Dev., 15: 912–917. [CrossRef] [Google Scholar]
  • Keith, L.H., Gron, L.U. and Young, J.L., (2007) Chem. Rev., 107, 2695. [CrossRef] [PubMed] [Google Scholar]
  • Kemsley, J.N., (2009) Chem. Eng. News, 87, 29–31. [Google Scholar]
  • Kerton, F.M., (2009), in Alternative Solvents for Green Chemistry, RSC Green Chemistry Book Series, Royal Society of Chemistry, ch. 8, 68; [CrossRef] [Google Scholar]
  • Arai, Y., Sako, T. and Takebayashi, Y., (2002) in Supercritical Fluids, Springer series in materials processing, Springer, New York; [Google Scholar]
  • Gordon, C.M. and Leitner, W., (2006) in Catalyst Separation Recovery and Recycling, Springer, Netherlands, ch. 8, 215; [CrossRef] [Google Scholar]
  • Hyde, J.R., Licence, P., Carter, D. and Poliakoff, M., (2001) Appl. Catal., A, 222, 119. [CrossRef] [Google Scholar]
  • Kerton, F.M., (2009) in Alternative Solvents for Green Chemistry, RSC Green Chemistry Book Series, Royal Society of Chemistry, ch. 2, 23; [CrossRef] [Google Scholar]
  • Tanaka, K., (2003) in Solvent-free Organic Synthesis, WileyVCH Verlag GmbH & Co KGaA, Weinheim, Germany; [CrossRef] [Google Scholar]
  • Cave, G.W.V., Raston, C.L. and Scott, J.L., (2001) Chem. Commun., 2159; [Google Scholar]
  • Varma, R.S., and Ju, Y., (2005) in Green Separation Processes, WileyVCH Verlag GmbH & Co KGaA, Weinheim, Germany, pp. 53–87. [CrossRef] [Google Scholar]
  • Kilty, P.A. and Sachtler, W.M.H., (1974) Catal. Rev., 10, 1. [CrossRef] [Google Scholar]
  • Knapp, D.R., (1979) in Handbook of Analytical Derivatization Reactions, John Wiley & Sons. [Google Scholar]
  • Kokel, A., and Schafer, C. (2018). Application of Green Chemistry in Homogeneous Catalysis. Green Chemistry, 375–414. doi: 10.1016/b978-0-12-809270-5.00016-9. [Google Scholar]
  • Laughton, M.A., (1990) in Renewable Energy Sources, Watt Committee report 22, Elsevier Applied Science; [Google Scholar]
  • Johansson, T.B., Kelly, H., Reddy, A.K.N. and Williams, R.H., (1993) in Renewable Energy, Sources for Fuels and Electricity, Island Press; [Google Scholar]
  • Turner, W.C., (2005) in Energy Management Handbook, The Fairmont Press, Inc., Lilburn, USA, 5th edn,; [Google Scholar]
  • Kreith, F. and Goswami, D.Y., (2007) in Handbook of Energy Efficiency and Renewable Energy, CRC Press, Taylor & Francis Group, LLC, Boca Raton, USA. [Google Scholar]
  • Lenardao, J.E., Freitag, R.A., Dabdoub, M.J., Batista, A.C.F. and Silveira, C.C., (2003) New Chem. 26, 123-129. [Google Scholar]
  • Loupy, A., (2004) Solvent-free microwave organic synthesis as an efficient procedure for green chemistry. C. R. Chim., 7, 103–112. [CrossRef] [Google Scholar]
  • Luque, A. and Hegedus, S., (2003) in Handbook of photovoltaic science and engineering, John Wiley & Sons, Ltd, West Sussex, England; [CrossRef] [Google Scholar]
  • Markvart, T., (2000) in Solar Electricity, John Wiley & Sons, West Sussex, England, 2nd edn.; [Google Scholar]
  • Fendler, J.H., (1985) J. Phys. Chem., 89, 2730. [CrossRef] [Google Scholar]
  • Manley, J.B., Anastas, P.T., Cue, B.W., (2008) Jr. Frontiers in Green Chemistry: meeting the grand challenges for sustainability in R&D and manufacturing. J. Clean. Prod., 16, 743–750. [CrossRef] [Google Scholar]
  • Martinez, C.A., Dumond, H.S., Tao, Y., Kelleher, J., Tully, P., (2008) Org. Process Res. Dev., 12, 392–398. [CrossRef] [Google Scholar]
  • McClellan, P.P., (1950) Ind. Eng. Chem., 42, 2402. [CrossRef] [Google Scholar]
  • Murai, S., (1999) in Activation of Unreactive Bonds and Organic Synthesis, Topics in Organometallic Chemistry, Springer-Verlag, Berlin Heidelberg, vol. 3; [CrossRef] [Google Scholar]
  • Goldberg, K. and Goldman, A.S., (2004), in Activation and Functionalization of C–H Bonds, ACS Symposium Series, Oxford University Press; [CrossRef] [Google Scholar]
  • Fujiwara, Y. and Jia, C., (2001) Pure Appl. Chem., 73: 319; [CrossRef] [Google Scholar]
  • Labinger, J.A. and Bercaw, J.E., (2002) Nature, 417: 507; [CrossRef] [PubMed] [Google Scholar]
  • Bergman, R.G., (2007) Nature, 446, 391; [CrossRef] [PubMed] [Google Scholar]
  • Herrerias, C.I., Yao, X., Li, Z. and Li, C.J., (2007) Chem. Rev., 107, 2546. [CrossRef] [PubMed] [Google Scholar]
  • Nicolaou, K.C., Montagnon, T. and Snyder, S.A., (2003) Chem. Commun., 551; [Google Scholar]
  • Nicolaou, K.C., Edmonds, D.J., and Bulger, P.G., (2006) Angew. Chem., Int. Ed., 45: 7134; For tandem reactions, see: [CrossRef] [PubMed] [Google Scholar]
  • Parsons, P.J., Penkett, C.S. and Shell, A.J., (1996), Chem. Rev., 96, 195; [CrossRef] [PubMed] [Google Scholar]
  • Padwa, A., (2004), Pure Appl. Chem., 76, 1933. [CrossRef] [Google Scholar]
  • Nolasco, F.R., Tavares, G.A., Bendassolli, J.A., (2006) Sanitary Environ. Eng. 11, 118-124. [Google Scholar]
  • Noyori, R., Ohkuma, T., Kitamura, M., Takaya, H., Sayo, N., Kumobayashi, H. and Akutagawa, S., (1987) J. Am. Chem. Soc., 109, 5856. [CrossRef] [Google Scholar]
  • Painter, H. (1992), in The handbook of environmental chemistry, SpringerVerlag, Berlin, vol. 3F, p. 1; [Google Scholar]
  • Stache, H.W., (1995) in Anionic Surfactants, Organic Chemistry, Surfactant Science Series, Marcel Dekker Inc, vol. 56; [Google Scholar]
  • Swisher, R.D., (1987), in Surfactant Biodegradation, Surfactant Science Series, Marcel Dekker Inc, 2nd edn, vol. 18. [Google Scholar]
  • Paul, A., (1999). Crit. Rev. Anal. Chem. 29, 167–175. [CrossRef] [Google Scholar]
  • Paul, A. and Crabtree, R., (2009) in Handbook of Green Chemistry—Green Catalysis: Biocatalysis, Wiley-VCH Verlag GmbH, New York, vol. 3. [Google Scholar]
  • Paul, A. and Nicolas, E., (2010) Green Chemistry: Principles and Practice. Chemical Society Review. 39, 301–312. https://doi.org/10.1039/b918763b. [CrossRef] [PubMed] [Google Scholar]
  • Patel, K.R., Sen, D.J., Jatakiya, V.P., (2013) Atom Economy in Drug Synthesis is a Playground of Functional Groups. Am. J. Adv. Drug Deliv., 1, 73–83. [Google Scholar]
  • Prado, A.G.S., (2003) New Chem. 26: 738-744. [Google Scholar]
  • Prat, D., Haylera, J. and Wells, A., (2013) A Survey of Solvent Selection Guides; Royal Society of Chemistry, 00, 1-3. [Google Scholar]
  • Prat, D., Pardigon, O., Flemming, H.W., Letestu, S., Ducandas, V., Isnard, P., Guntrum, E., Senac, T., Ruisseau, S., Cruciani, P., Hosek, P., (2013) Org. Process Res. Dev., 17, 1517-1525. [CrossRef] [Google Scholar]
  • Quallich, G.J., (2005) Development of the Commercial Process for ZoloftR/Sertraline. Chirality, 17, S120– S126. [CrossRef] [PubMed] [Google Scholar]
  • Sanseverino, A.M., (2000) New Chem, 23, 102-107. [Google Scholar]
  • Schafer, H.J., (2011) Contributions of organic electrosynthesis to green chemistry. C. R. Chim. 14, 745–765. [CrossRef] [Google Scholar]
  • Sheldon, R.A., (2000) Atom efficiency and catalysis in organic synthesis. Pure Appl. Chem. 72, 1233–1246. [CrossRef] [Google Scholar]
  • Sheldon, R.A., (2008) Chem. Commun., 3352. [Google Scholar]
  • Sheldon, R.A., (1993) Chirotechnology: the Industrial Synthesis of Optically Active Compounds, Marcel Dekker, New York. [Google Scholar]
  • Sheldon, R.A., (2012) Fundamentals of green chemistry: efficiency in reaction design, Chem. Soc. Rev., 41, 1437–145. [CrossRef] [PubMed] [Google Scholar]
  • Sheldon, R.A., (2007) Green Chem., 9, 1273. [CrossRef] [Google Scholar]
  • Sheldon, R.A., (2007) The E Factor: fifteen years on. Green Chem., 9, 1273–1283. [CrossRef] [Google Scholar]
  • Sheldon, R.A., (2011) Utilisation of biomass for sustainable fuels and chemicals: Molecules, methods and metrics. Catal., 167, 3–13. [Google Scholar]
  • Silverman, R.B., (2002) in The Organic Chemistry of Enzyme-Catalyzed Reactions, Academic Press, New York,; [Google Scholar]
  • Bommarius, A.S. and Riebel, B.R., (2004) in Biocatalysis, Wiley-VCH Verlag GmbH & Co. KgaA. [CrossRef] [Google Scholar]
  • Smith, M.B. and March, J., (2001) March’s Advanced Organic Chemistry: Reactions Mechanisms and Structure, John Wiley & Sons Inc., New York, 5, 1205–1209. [Google Scholar]
  • Solid Waste and Emergency response CEPPO, Chemical accident prevention and the clean air act amendments of 1990, US Environmental Protection Agency, Washington DC EPA 550K94001, 1994. [Google Scholar]
  • Taylor, L.D. and Warner, J.C., (1993) US Pat., 5 177 262. [Google Scholar]
  • Trost, B.M., (1995) Angew. Chem., Int. Ed. Engl., 34, 259. [CrossRef] [Google Scholar]
  • Vielstich, W., Lamm, A. and Gasteiger, H.A., (2003) in Handbook of Fuel Cells: Fundamentals, Technology, Applications, John Wiley & Sons.; [Google Scholar]
  • Sorensen, B., (2005) in Hydrogen and Fuel Cells, Elsevier Academic Press. [Google Scholar]
  • Wardencki, W., Curylo, J., Namiesnik, J., (2005) Green Chemistry — Current and Future Issues. Polish Journal of Environmental Studies Vol. 14, No 4, 389-395. [Google Scholar]
  • Wei, C.M. and Li, C.J., (2002) Green Chem., 4, 39. [CrossRef] [Google Scholar]
  • Welton, T., (1999) Chem. Rev., 99, 2071; [CrossRef] [PubMed] [Google Scholar]
  • Earle, M.J. and Seddon, K.R., (2002) in Clean Solvents: Alternative Media for Chemical Reactions and Processing—Ionic liquids: green solvents for the future, ACS Symposium Series, American Chemical Society, vol. 819: 10–25; [CrossRef] [Google Scholar]
  • Rogers, R.D., Seddon, K.R. and Volkov, S., (2002) in Green Industrial Applications of Ionic Liquids, Kluwer Academic Publishers, Dordrecht.; [Google Scholar]
  • Rogers, R.D. and Seddon, K.R., (2003) in Ionic Liquids as Green Solvents, ACS Symposium Series, American Chemical Society, p. 856; [Google Scholar]
  • Sethi R, Arora S, Jain N, Jain S (2015) Mannich Bases of 2-Substituted Benzimidazoles-A [Google Scholar]
  • Review. Journal of Pharmaceutical Technology, Research and Management 3(2), 97-111. [Google Scholar]
  • Wasserscheid, P. and Welton, T., (2007) in Ionic Liquids in Synthesis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.; [CrossRef] [Google Scholar]
  • Plechkova, N.V. and Seddon, K.R., (2007) in Methods and Reagents for Green Chemistry - Ionic liquids: ‘‘designer’’ solvents for green chemistry, John Wiley & Sons Inc, Hoboken, pp. 105–130; [Google Scholar]
  • Seddon, K.R., (2003) Nat. Mater., 2, 363; [CrossRef] [PubMed] [Google Scholar]
  • Earle, M.J. and Seddon, K.R., (2007) Pure Appl. Chem., 72, 1391; [Google Scholar]
  • Visser, A.E., Swatloski, R.P., Reichert, W.M., Willauer, H.D., Huddleston, J.G. and Rogers, R.D., (2003) NATO Science Series: II, Mathematics Physics and Chemistry, 92, 137; [Google Scholar]
  • Hough, W.L. and Rogers, R.D., (2007) Bull. Chem. Soc. Jpn., 80, 2262. [CrossRef] [Google Scholar]
  • Yoon, N.M. and Gyoung, Y.S., (1985) J. Org. Chem., 50, 2443. [CrossRef] [Google Scholar]
  • Kumar D, Jamwal A, Madaan R, Kumar S (2014)., Estimation of total phenols and flavonoids in selected Indian traditional plants. Journal of Pharmaceutical Technology, Research and Management 2(1), 77-86. [CrossRef] [Google Scholar]
  • Singh, S., Parmar, K.S., Kumar, J. and Makkhan, S.J.S., 2020. Development of new hybrid model of discrete wavelet decomposition and autoregressive integrated moving average (ARIMA) models in application to one month forecast the casualties cases of COVID-19. Chaos, solitons & fractals, 135, p.109866. [CrossRef] [Google Scholar]
  • Akhtar, N. and Mannan, M.A.U., 2020. Mycoremediation: expunging environmental pollutants. Biotechnology reports, 26, p.e00452. [CrossRef] [Google Scholar]
  • Dua, K., Malyla, V., Singhvi, G., Wadhwa, R., Krishna, R.V., Shukla, S.D., Shastri, M.D., Chellappan, D.K., Maurya, P.K., Satija, S. and Mehta, M., 2019. Increasing complexity and interactions of oxidative stress in chronic respiratory diseases: an emerging need for novel drug delivery systems. Chemico-biological interactions, 299, pp.168-178. [CrossRef] [PubMed] [Google Scholar]
  • Haldhar, R., Prasad, D., Saxena, A. and Kumar, R., 2018. Experimental and theoretical studies of Ficus religiosa as green corrosion inhibitor for mild steel in 0.5 M H2SO4 solution. Sustainable Chemistry and Pharmacy, 9, pp.95-105. [CrossRef] [Google Scholar]
  • Mann, G.S., Singh, L.P., Kumar, P. and Singh, S., 2020. Green composites: A review of processing technologies and recent applications. Journal of Thermoplastic Composite Materials, 33(8), pp.1145-1171. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.