Open Access
Issue |
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
|
|
---|---|---|
Article Number | 01041 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/bioconf/20248601041 | |
Published online | 12 January 2024 |
- Li, Shi-Hua, and Xiao-Jiang Li. “Huntingtin–protein interactions and the pathogenesis of Huntington’s disease.” TRENDS in Genetics 20, no. 3 (2004): 146-154. [CrossRef] [PubMed] [Google Scholar]
- Behl, Tapan, Dapinder Kaur, Aayush Sehgal, Sukhbir Singh, Neelam Sharma, Gokhan Zengin, Felicia Liana Andronie-Cioara, Mirela Marioara Toma, Simona Bungau, and Adrian Gheorghe Bumbu. “Role of monoamine oxidase activity in Alzheimer’s disease: an insight into the therapeutic potential of inhibitors.” Molecules 26, no. 12 (2021): 3724. [CrossRef] [PubMed] [Google Scholar]
- Zheng, Zhiqiang, and Marc I. Diamond. “Huntington disease and the huntingtin protein.” Progress in molecular biology and translational science 107 (2012): 189-214. [CrossRef] [PubMed] [Google Scholar]
- Ross, Christopher A., Elizabeth H. Aylward, Edward J. Wild, Douglas R. Langbehn, Jeffrey D. Long, John H. Warner, Rachael I. Scahill et al. “Huntington disease: natural history, biomarkers and prospects for therapeutics.” Nature Reviews Neurology 10, no. 4 (2014): 204-216. [CrossRef] [PubMed] [Google Scholar]
- Kay, Chris, Michael R. Hayden, and Blair R. Leavitt. “Epidemiology of Huntington disease.” Handbook of clinical neurology 144 (2017): 31-46. [CrossRef] [PubMed] [Google Scholar]
- Pringsheim, Tamara, Katie Wiltshire, Lundy Day, Jonathan Dykeman, Thomas Steeves, and Nathalie Jette. “The incidence and prevalence of Huntington’s disease: a systematic review and meta‐analysis.” Movement Disorders 27, no. 9 (2012): 1083-1091. [CrossRef] [PubMed] [Google Scholar]
- Chen, Xueping, Chunyan Guo, and Jiming Kong. “Oxidative stress in neurodegenerative diseases.” Neural regeneration research 7, no. 5 (2012): 376. [PubMed] [Google Scholar]
- Li, Robert, Zhenquan Jia, and Michael A. Trush. “Defining ROS in biology and medicine.” Reactive oxygen species (Apex, NC) 1, no. 1 (2016): 9. [Google Scholar]
- Tabassum, Rubaiya, and Na Young Jeong. “Potential for therapeutic use of hydrogen sulfide in oxidative stress-induced neurodegenerative diseases.” International Journal of Medical Sciences 16, no. 10 (2019): 1386. [CrossRef] [PubMed] [Google Scholar]
- Cooke, Marcus S., Mark D. Evans, Miral Dizdaroglu, and Joseph Lunec. “Oxidative DNA damage: mechanisms, mutation, and disease.” The FASEB Journal 17, no. 10 (2003): 1195-1214. [CrossRef] [PubMed] [Google Scholar]
- Hong, Sung-Yong, Ludmila V. Roze, and John E. Linz. “Oxidative stress-related transcription factors in the regulation of secondary metabolism.” Toxins 5, no. 4 (2013): 683-702. [CrossRef] [PubMed] [Google Scholar]
- Pivtoraiko, Violetta N., Sara L. Stone, Kevin A. Roth, and John J. Shacka. “Oxidative stress and autophagy in the regulation of lysosome-dependent neuron death.” Antioxidants & redox signaling 11, no. 3 (2009): 481-496. [CrossRef] [PubMed] [Google Scholar]
- Paradies, Giuseppe, Valeria Paradies, Francesca M. Ruggiero, and Giuseppe Petrosillo. “Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease.” World journal of gastroenterology: WJG 20, no. 39 (2014): 14205. [CrossRef] [PubMed] [Google Scholar]
- Kumar, Puneet, Mandeep Kumar, Onkar Bedi, Manisha Gupta, Sachin Kumar, Gagandeep Jaiswal, Vikrant Rahi et al. “Role of vitamins and minerals as immunity boosters in COVID-19.” Inflammopharmacology 29, no. 4 (2021): 1001-1016. [CrossRef] [PubMed] [Google Scholar]
- Haynes, Cole M., Eric A. Titus, and Antony A. Cooper. “Degradation of misfolded proteins prevents ER- derived oxidative stress and cell death.” Molecular cell 15, no. 5 (2004): 767-776. [CrossRef] [PubMed] [Google Scholar]
- Chong, Wai Chin, Madhur D. Shastri, and Rajaraman Eri. “Endoplasmic reticulum stress and oxidative stress: a vicious nexus implicated in bowel disease pathophysiology.” International journal of molecular sciences 18, no. 4 (2017): 771. [CrossRef] [PubMed] [Google Scholar]
- Lu, Meng‐Chen, Jian‐Ai Ji, Zheng‐Yu Jiang, and Qi‐Dong You. “The Keap1–Nrf2–ARE pathway as a potential preventive and therapeutic target: an update.” Medicinal research reviews 36, no. 5 (2016): 924-963. [CrossRef] [PubMed] [Google Scholar]
- Wu, Haijian, Huanjiang Niu, Anwen Shao, Cheng Wu, Brandon J. Dixon, Jianmin Zhang, Shuxu Yang, and Yirong Wang. “Astaxanthin as a potential neuroprotective agent for neurological diseases.” Marine drugs 13, no. 9 (2015): 5750-5766. [CrossRef] [PubMed] [Google Scholar]
- Brotosudarmo, Tatas Hardo Panintingjati, Leenawaty Limantara, and Edi Setiyono. “Structures of astaxanthin and their consequences for therapeutic application.” International Journal of Food Science 2020 (2020). [Google Scholar]
- Singh, Pradeep, Garima Mishra, Mulugeta Molla, Yohannes Shumet Yimer, Woretaw Sisay, Yared Andargie, and Amien Ewunetie. “Dietary and nutraceutical-based therapeutic approaches to combat the pathogenesis of Huntington’s disease.” Journal of Functional Foods 92 (2022): 105047. [CrossRef] [Google Scholar]
- Kumar, Amit, and Rajiv R. Ratan. “Oxidative stress and Huntington’s disease: The good, the bad, and the ugly.” Journal of Huntington’s disease 5, no. 3 (2016): 217-237. [CrossRef] [Google Scholar]
- Behl, Tapan, Gagandeep Kaur, Aayush Sehgal, Shaveta Bhardwaj, Sukhbir Singh, Camelia Buhas, Claudia Judea-Pusta, Diana Uivarosan, Mihai Alexandru Munteanu, and Simona Bungau. “Multifaceted role of matrix metalloproteinases in neurodegenerative diseases: Pathophysiological and therapeutic perspectives.” International Journal of Molecular Sciences 22, no. 3 (2021): 1413. [CrossRef] [PubMed] [Google Scholar]
- Kumar, Sunil, and S. V. Singh. “Inhibition of NF-κBsignaling pathway by astaxanthin supplementation for prevention of heat stress–induced inflammatory changes and apoptosis in Karan Fries heifers.” Tropical animal health and production 51 (2019): 1125-1134. [CrossRef] [PubMed] [Google Scholar]
- Chen, Yuqiong, Su Li, Yuxuan Guo, Hang Yu, Yandong Bao, Xin Xin, Huimin Yang, Xinzhu Ni, Nan Wu, and Dalin Jia. “Astaxanthin attenuates hypertensive vascular remodeling by protecting vascular smooth muscle cells from oxidative stress-induced mitochondrial dysfunction.” Oxidative Medicine and Cellular Longevity 2020 (2020): 1-19. [Google Scholar]
- Pereira, Carolina Parga Martins, Ana Carolina Remondi Souza, Andrea Rodrigues Vasconcelos, and Pietra Sacramento Prado. “Antioxidant and anti-inflammatory mechanisms of action of astaxanthin in cardiovascular diseases.” International journal of molecular medicine 47, no. 1 (2021): 37-48. [Google Scholar]
- Si, Pan, and Chenkai Zhu. “Biological and neurological activities of astaxanthin.” Molecular Medicine Reports 26, no. 4 (2022): 1-12. [CrossRef] [Google Scholar]
- Jiang, Wenxiao, Wenjie Wei, Marta A. Gaertig, Shihua Li, and Xiao-Jiang Li. “Therapeutic effect of berberine on Huntington’s disease transgenic mouse model.” PloS one 10, no. 7 (2015): e0134142. [Google Scholar]
- Kumar, Anil, Kanwaljit Chopra, Madhurima Mukherjee, Raghavender Pottabathini, and Dinesh K. Dhull. “Current knowledge and pharmacological profile of berberine: an update.” European journal of pharmacology 761 (2015): 288-297. [CrossRef] [PubMed] [Google Scholar]
- Cai, Zhiyou, Chuanling Wang, and Wenming Yang. “Role of berberine in Alzheimer’s disease.” Neuropsychiatric disease and treatment (2016): 2509-2520. [Google Scholar]
- Jiang, WenXiao, ShiHua Li, and XiaoJiang Li. “Therapeutic potential of berberine against neurodegenerative diseases.” Science China Life Sciences 58 (2015): 564-569. [CrossRef] [PubMed] [Google Scholar]
- Hsu, Ya-Yun, Cheng-Sheng Chen, Sheng-Nan Wu, Yuh-Jyh Jong, and Yi-Ching Lo. “Berberine activates Nrf2 nuclear translocation and protects against oxidative damage via a phosphatidylinositol 3-kinase/Akt- dependent mechanism in NSC34 motor neuron-like cells.” European Journal of Pharmaceutical Sciences 46, no. 5 (2012): 415-425. [CrossRef] [PubMed] [Google Scholar]
- Zhang, Xiaolin, Xiangjian Zhang, Chaohui Wang, Yanhua Li, Lipeng Dong, Lili Cui, Lina Wang et al. “Neuroprotection of early and short-time applying berberine in the acute phase of cerebral ischemia: up- regulated pAkt, pGSK and pCREB, down-regulated NF-κB expression, ameliorated BBB permeability.” Brain research 1459 (2012): 61-70. [CrossRef] [PubMed] [Google Scholar]
- Hu, Jun, Yushuang Chai, Yugang Wang, Michael M. Kheir, Huiying Li, Zhiyi Yuan, Hongjiao Wan, Dongming Xing, Fan Lei, and Lijun Du. “PI3K p55γ promoter activity enhancement is involved in the anti- apoptotic effect of berberine against cerebral ischemia–reperfusion.” European Journal of Pharmacology 674, no. 2-3 (2012): 132-142. [CrossRef] [PubMed] [Google Scholar]
- Zhou, Xi-Qiao, Xiao-Ning Zeng, Hui Kong, and Xiu-Lan Sun. “Neuroprotective effects of berberine on stroke models in vitro and in vivo.” Neuroscience Letters 447, no. 1 (2008): 31-36. [CrossRef] [PubMed] [Google Scholar]
- Cui, Hu-Shan, Kinzo Matsumoto, Yukihisa Murakami, Hitomi Hori, Qi Zhao, and Ryosuke Obi. “Berberine exerts neuroprotective actions against in vitro ischemia-induced neuronal cell damage in organotypic hippocampal slice cultures: involvement of B-cell lymphoma 2 phosphorylation suppression.” Biological and Pharmaceutical Bulletin 32, no. 1 (2009): 79-85. [CrossRef] [PubMed] [Google Scholar]
- Lim, Jung Su, Hyosup Kim, YoonSeok Choi, Hyockman Kwon, Ki Soon Shin, Insil Joung, Mijung Shin, and Yunhee Kim Kwon. “Neuroprotective effects of berberine in neurodegeneration model rats induced by ibotenic acid.” Animal Cells and Systems 12, no. 4 (2008): 203-209. [CrossRef] [Google Scholar]
- Zhang, Jing, Jun-Qing Yang, Bai-Cheng He, Qi-Xin Zhou, Hua-Rong Yu, Yong Tang, and Bei-Zhong Liu. “Berberine and total base from rhizomacoptis chinensis attenuate brain injury in an aluminum-induced rat model of neurodegenerative disease.” Saudi medical journal 30, no. 6 (2009): 760-766. [PubMed] [Google Scholar]
- Hong, Jeong‐Seok, Yeun‐Kyung Chu, Hyung Lee, Byung‐Hoon Ahn, Jae‐Hyung Park, Mi‐Jung Kim, Sunghye Lee et al. “Effects of berberine on hippocampal neuronal damage and matrix metalloproteinase‐9 activity following transient global cerebral ischemia.” Journal of Neuroscience Research 90, no. 2 (2012): 489-497. [CrossRef] [PubMed] [Google Scholar]
- Benaissa, F., H. Mohseni-Rad, P. Rahimi-Moghaddam, and Massoud Mahmoudian. “Berberine reduces the hypoxic-ischemic insult in rat pup brain.” Acta PhysiologicaHungarica 96, no. 2 (2009): 213-220. [Google Scholar]
- Lee, Taehwan, Hwon Heo, and Yunhee Kim Kwon. “Effect of berberine on cell survival in the developing rat brain damaged by MK-801.” Experimental Neurobiology 19, no. 3 (2010): 140. [CrossRef] [PubMed] [Google Scholar]
- Bhutada, Pravinkumar, Yogita Mundhada, Kuldeep Bansod, Santosh Tawari, Shaktipal Patil, Pankaj Dixit, Sudhir Umathe, and Dharmendra Mundhada. “Protection of cholinergic and antioxidant system contributes to the effect of berberine ameliorating memory dysfunction in rat model of streptozotocin-induced diabetes.” Behavioural brain research 220, no. 1 (2011): 30-41. [CrossRef] [PubMed] [Google Scholar]
- P.K. Singh, B. Gorain, H. Choudhury, S.K. Singh, P. Whadwa, S. Sahu, M. Gulati, P. Kesharwani, “Macrophage targeted amphotericin B nanodelivery systems against visceral leishmaniasis,” Materials Science and Engineering: B, vol. 258, p. 114571, 2020. [CrossRef] [Google Scholar]
- Bao, Wei, Ke Li, Shuang Rong, Ping Yao, Liping Hao, Chenjiang Ying, Xiping Zhang, Andreas Nussler, and Liegang Liu. “Curcumin alleviates ethanol-induced hepatocytes oxidative damage involving heme oxygenase- 1 induction.” Journal of ethnopharmacology 128, no. 2 (2010): 549-553. [CrossRef] [PubMed] [Google Scholar]
- Lobo, Richard, Kirti S. Prabhu, Annie Shirwaikar, and Arun Shirwaikar. “Curcuma zedoariaRosc.(white turmeric): a review of its chemical, pharmacological and ethnomedicinal properties.” Journal of Pharmacy and Pharmacology 61, no. 1 (2009): 13-21. [CrossRef] [Google Scholar]
- Rajamma, Angel Gabriel, Vimala Bai, and Bala Nambisan. “Antioxidant and antibacterial activities of oleoresins isolated from nine Curcuma species.” Phytopharmacology 2, no. 2 (2012): 312-317. [Google Scholar]
- Tohda, Chihiro, Natsuki Nakayama, Fumiyuki Hatanaka, and Katsuko Komatsu. “Comparison of anti- inflammatory activities of six Curcuma rhizomes: a possible curcuminoid-independent pathway mediated by Curcuma phaeocaulis extract.” Evidence-Based Complementary and Alternative Medicine 3 (2006): 255-260. [CrossRef] [PubMed] [Google Scholar]
- Ullah, Faheem, Andy Liang, Alejandra Rangel, Erika Gyengesi, Garry Niedermayer, and Gerald Münch. “High bioavailability curcumin: an anti-inflammatory and neurosupportive bioactive nutrient for neurodegenerative diseases characterized by chronic neuroinflammation.” Archives of Toxicology 91 (2017): 1623-1634.. [CrossRef] [PubMed] [Google Scholar]
- Witika, Bwalya Angel, Pedzisai Anotida Makoni, Scott Kaba Matafwali, Larry Lawrence Mweetwa, Ginnethon Chaamba Shandele, and Roderick Bryan Walker. “Enhancement of biological and pharmacological properties of an encapsulated polyphenol: Curcumin.” Molecules 26, no. 14 (2021): 4244. [CrossRef] [PubMed] [Google Scholar]
- Darvesh, Altaf S., Richard T. Carroll, Anupam Bishayee, Nicholas A. Novotny, Werner J. Geldenhuys, and Cornelis J. Van der Schyf. “Curcumin and neurodegenerative diseases: a perspective.” Expert opinion on investigational drugs 21, no. 8 (2012): 1123-1140.. [CrossRef] [PubMed] [Google Scholar]
- Oppenheimer, Albert. “Turmeric (curcumin) in biliary diseases.” The Lancet 229, no. 5924 (1937): 619-621. [CrossRef] [Google Scholar]
- Labanca, Fabiana, Hammad Ullah, Haroon Khan, Luigi Milella, Jianbo Xiao, Zora Dajic-Stevanovic, and Philippe Jeandet. “Therapeutic and mechanistic effects of curcumin in Huntington’s disease.” Current Neuropharmacology 19, no. 7 (2021): 1007-1018. [CrossRef] [PubMed] [Google Scholar]
- Márquez, Lucía, Borja García-Bueno, José LM Madrigal, and Juan C. Leza. “Mangiferin decreases inflammation and oxidative damage in rat brain after stress.” European Journal of Nutrition 51 (2012): 729-739. [CrossRef] [PubMed] [Google Scholar]
- Bhat, Abid, Arehally M. Mahalakshmi, Bipul Ray, Sunanda Tuladhar, Tousif A. Hediyal, Esther Manthiannem, Jagadeeswari Padamati, Ramesh Chandra, Saravana B. Chidambaram, and Meena K. Sakharkar. “Benefits of curcumin in brain disorders.” BioFactors 45, no. 5 (2019): 666-689. [CrossRef] [PubMed] [Google Scholar]
- Scapagnini, Giovanni, Calogero Caruso, and Vittorio Calabrese. “Therapeutic potential of dietary polyphenols against brain ageing and neurodegenerative disorders.” Adv Exp Med Biol 698 (2010): 27-35. [CrossRef] [PubMed] [Google Scholar]
- Sumanont, Yaowared, Yukihisa Murakami, Michihisa Tohda, Opa Vajragupta, Kinzo Matsumoto, and Hiroshi Watanabe. “Evaluation of the nitric oxide radical scavenging activity of manganese complexes of curcumin and its derivative.” Biological and Pharmaceutical Bulletin 27, no. 2 (2004): 170-173. [CrossRef] [PubMed] [Google Scholar]
- Kant, Vinay, Anu Gopal, Nitya N. Pathak, Pawan Kumar, Surendra K. Tandan, and Dinesh Kumar. “Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats.” International immunopharmacology 20, no. 2 (2014): 322-330. [CrossRef] [PubMed] [Google Scholar]
- Song, Zhimei, Runliang Feng, Min Sun, Chenyu Guo, Yan Gao, Lingbing Li, and Guangxi Zhai. “Curcumin- loaded PLGA-PEG-PLGA triblock copolymeric micelles: Preparation, pharmacokinetics and distribution in vivo.” Journal of colloid and interface science 354, no. 1 (2011): 116-123. [CrossRef] [PubMed] [Google Scholar]
- Wanninger, Simon, Volker Lorenz, Abdus Subhan, and Frank T. Edelmann. “Metal complexes of curcumin– synthetic strategies, structures and medicinal applications.” Chemical Society Reviews 44, no. 15 (2015): 4986-5002. [CrossRef] [PubMed] [Google Scholar]
- Maiti, Panchanan, and Gary L. Dunbar. “Use of curcumin, a natural polyphenol for targeting molecular pathways in treating age-related neurodegenerative diseases.” International journal of molecular sciences 19, no. 6 (2018): 1637. [CrossRef] [PubMed] [Google Scholar]
- Hickey, Miriam A., Chunni Zhu, Vera Medvedeva, Renata P. Lerner, Stefano Patassini, Nicholas R. Franich, Panchanan Maiti et al. “Improvement of neuropathology and transcriptional deficits in CAG 140 knock-in mice supports a beneficial effect of dietary curcumin in Huntington’s disease.” Molecular Neurodegeneration 7, no. 1 (2012): 1-16. [CrossRef] [PubMed] [Google Scholar]
- Selkoe, Dennis J. “Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases.” Nature cell biology 6, no. 11 (2004): 1054-1061. [CrossRef] [PubMed] [Google Scholar]
- Kakkar, Vaishali, Melanie Meister-Broekema, Melania Minoia, Serena Carra, and Harm H. Kampinga. “Barcoding heat shock proteins to human diseases: looking beyond the heat shock response.” Disease models & mechanisms 7, no. 4 (2014): 421-434.. [CrossRef] [PubMed] [Google Scholar]
- Dou, Fei, William J. Netzer, Kentaro Tanemura, Feng Li, F. Ulrich Hartl, Akihiko Takashima, Gunnar K. Gouras, Paul Greengard, and Huaxi Xu. “Chaperones increase association of tau protein with microtubules.” Proceedings of the National Academy of Sciences 100, no. 2 (2003): 721-726.. [CrossRef] [PubMed] [Google Scholar]
- Wyttenbach, Andreas, Jenny Carmichael, Jina Swartz, Robert A. Furlong, Yolanda Narain, Julia Rankin, and David C. Rubinsztein. “Effects of heat shock, heat shock protein 40 (HDJ-2), and proteasome inhibition on protein aggregation in cellular models of Huntington’s disease.” Proceedings of the National Academy of Sciences 97, no. 6 (2000): 2898-2903.. [CrossRef] [PubMed] [Google Scholar]
- Sherman, Michael Y., and Alfred L. Goldberg. “Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases.” Neuron 29, no. 1 (2001): 15-32. [CrossRef] [PubMed] [Google Scholar]
- Zhang, Yu-Qian, and Kevin D. Sarge. “Celastrol inhibits polyglutamine aggregation and toxicity though induction of the heat shock response.” Journal of molecular medicine 85 (2007): 1421-1428. [CrossRef] [PubMed] [Google Scholar]
- Davenport J, Manjarrez JR, Peterson L, Krumm B, Blagg BS, Matts RL. Gambogic acid, a natural product inhibitor of Hsp90. J Nat Prod 2011;74(5):1085-92. [CrossRef] [PubMed] [Google Scholar]
- Maiti, Panchanan, and Gary L. Dunbar. “Comparative neuroprotective effects of dietary curcumin and solid lipid curcumin particles in cultured mouse neuroblastoma cells after exposure to Aβ42.” International Journal of Alzheimer’s Disease 2017 (2017). [Google Scholar]
- Majumder, B. “Activation of heat shock protein induced by curcumin to prevent Huntington disease-an analytical approach in the context of protein vibration.” International Journal of Biophysics 8 (2018): 1-8. [Google Scholar]
- Alam, M. Ashraful, Nusrat Subhan, M. Mahbubur Rahman, Shaikh J. Uddin, Hasan M. Reza, and Satyajit D. Sarker. “Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action.” Advances in Nutrition 5, no. 4 (2014): 404-417. [CrossRef] [Google Scholar]
- Chen, Rui, Qiao-Ling Qi, Meng-Ting Wang, and Qi-Yan Li. “Therapeutic potential of naringin: an overview.” Pharmaceutical biology 54, no. 12 (2016): 3203-3210. [CrossRef] [PubMed] [Google Scholar]
- Mekhilef, Saad, Rahman Saidur, and Masoud Kamalisarvestani. “Effect of dust, humidity and air velocity on efficiency of photovoltaic cells.” Renewable and sustainable energy reviews 16, no. 5 (2012): 2920-2925. [CrossRef] [Google Scholar]
- Gopinath, Kulasekaran, and Ganapasam Sudhandiran. “Protective effect of naringin on 3-nitropropionic acid- induced neurodegeneration through the modulation of matrix metalloproteinases and glial fibrillary acidic protein.” Canadian journal of physiology and pharmacology 94, no. 1 (2016): 65-71. [CrossRef] [PubMed] [Google Scholar]
- Gopinath, K., and G. Sudhandiran. “Naringin modulates oxidative stress and inflammation in 3-nitropropionic acid-induced neurodegeneration through the activation of nuclear factor-erythroid 2-related factor-2 signalling pathway.” Neuroscience 227 (2012): 134-143. [CrossRef] [PubMed] [Google Scholar]
- Cui, Jian, Gang Wang, Amit D. Kandhare, Anwesha A. Mukherjee-Kandhare, and Subhash L. Bodhankar. “Neuroprotective effect of naringin, a flavone glycoside in quinolinic acid-induced neurotoxicity: possible role of PPAR-γ, Bax/Bcl-2, and caspase-3.” Food and chemical toxicology 121 (2018): 95-108. [CrossRef] [PubMed] [Google Scholar]
- Wang, Kaihua, Zhenzhen Chen, Longjian Huang, Bing Meng, Xinmei Zhou, Xiaodong Wen, and Ding Ren. “Naringenin reduces oxidative stress and improves mitochondrial dysfunction via activation of the Nrf2/ARE signaling pathway in neurons.” International Journal of Molecular Medicine 40, no. 5 (2017): 1582-1590. [CrossRef] [PubMed] [Google Scholar]
- Salman, Mohd, Pooja Sharma, Md Iqbal Alam, Heena Tabassum, and Suhel Parvez. “Naringenin mitigates behavioral alterations and provides neuroprotection against 3-nitropropinoic acid-induced Huntington’s disease like symptoms in rats.” Nutritional Neuroscience 25, no. 9 (2022): 1898-1908. [CrossRef] [PubMed] [Google Scholar]
- Liu, Yanying, Casey L. Hettinger, Dong Zhang, Khosrow Rezvani, Xuejun Wang, and Hongmin Wang. “Sulforaphane enhances proteasomal and autophagic activities in mice and is a potential therapeutic reagent for Huntington’s disease.” Journal of neurochemistry 129, no. 3 (2014): 539-547. [CrossRef] [PubMed] [Google Scholar]
- Matusheski, Nathan V., John A. Juvik, and Elizabeth H. Jeffery. “Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli.” Phytochemistry 65, no. 9 (2004): 1273-1281. [CrossRef] [PubMed] [Google Scholar]
- Schepici, Giovanni, Placido Bramanti, and Emanuela Mazzon. “Efficacy of sulforaphane in neurodegenerative diseases.” International journal of molecular sciences 21, no. 22 (2020): 8637. [CrossRef] [PubMed] [Google Scholar]
- Liu, Fangkun, Jing Huang, Gangrui Hei, Renrong Wu, and Zhixiong Liu. “Effects of sulforaphane on cognitive function in patients with frontal brain damage: study protocol for a randomised controlled trial.” BMJ open 10, no. 10 (2020): e037543. [CrossRef] [PubMed] [Google Scholar]
- Santín-Márquez, R., Alarcón-Aguilar, A., López-Diazguerrero, N.E., Chondrogianni, N. and Königsberg, M., 2019. Sulforaphane-role in aging and neurodegeneration. Geroscience, 41, pp.655-670. [CrossRef] [PubMed] [Google Scholar]
- Hu, Chenqi, Aimee L. Eggler, Andrew D. Mesecar, and Richard B. Van Breemen. “Modification of keap1 cysteine residues by sulforaphane.” Chemical research in toxicology 24, no. 4 (2011): 515-521. [CrossRef] [PubMed] [Google Scholar]
- Uddin, Md Sahab, Abdullah Al Mamun, Md Jakaria, Shanmugam Thangapandiyan, Jamil Ahmad, Md Ataur Rahman, Bijo Mathew, Mohamed M. Abdel-Daim, and Lotfi Aleya. “Emerging promise of sulforaphane- mediated Nrf2 signaling cascade against neurological disorders.” Science of the Total Environment 707 (2020): 135624. [CrossRef] [Google Scholar]
- Zalachoras, Ioannis, Fiona Hollis, Eva Ramos-Fernández, Laura Trovo, Sarah Sonnay, Eveline Geiser, Nicolas Preitner, Pascal Steiner, Carmen Sandi, and Laia Morató. “Therapeutic potential of glutathione-enhancers in stress-related psychopathologies.” Neuroscience &Biobehavioral Reviews 114 (2020): 134-155. [CrossRef] [Google Scholar]
- Dinkova-Kostova, Albena T., Rumen V. Kostov, and Peter Canning. “Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants.” Archives of biochemistry and biophysics 617 (2017): 84-93. [CrossRef] [PubMed] [Google Scholar]
- Pu, Die, Yuxing Zhao, Jinliang Chen, AnkangLv, Shiyu Zhu, Cheng Luo, Kexiang Zhao, and Qian Xiao. “Protective effects of sulforaphane on cognitive impairments and AD-like lesions in diabetic mice are associated with the upregulation of Nrf2 transcription activity.” Neuroscience 381 (2018): 35-45. [CrossRef] [PubMed] [Google Scholar]
- Zgorzynska, Emilia, Barbara Dziedzic, and Anna Walczewska. “An overview of the Nrf2/ARE pathway and its role in neurodegenerative diseases.” International Journal of Molecular Sciences 22, no. 17 (2021): 9592. [CrossRef] [PubMed] [Google Scholar]
- Shang, Guoguo, Xinjun Tang, Pan Gao, Fanli Guo, Hongpeng Liu, Zhonghua Zhao, Qi Chen, Tao Jiang, Nong Zhang, and Hui Li. “Sulforaphane attenuation of experimental diabetic nephropathy involves GSK-3 beta/Fyn/Nrf2 signaling pathway.” The Journal of Nutritional Biochemistry 26, no. 6 (2015): 596-606. [CrossRef] [PubMed] [Google Scholar]
- A. Verma, B. Kaur, S. Venugopal, P. Wadhwa, S. Sahu, P. Kaur, D. Kumar, A. Sharma, “Tetrazole: A privileged scaffold for the discovery of anticancer agents,” Chemical Biology & Drug Design, vol. 100, no. 3, 419-42, 2022. [CrossRef] [PubMed] [Google Scholar]
- Kubo, Eri, Bhavana Chhunchha, Prerna Singh, Hiroshi Sasaki, and Dhirendra P. Singh. “Sulforaphane reactivates cellular antioxidant defense by inducing Nrf2/ARE/Prdx6 activity during aging and oxidative stress.” Scientific reports 7, no. 1 (2017): 14130. [CrossRef] [PubMed] [Google Scholar]
- Magesh, Sadagopan, Yu Chen, and Longqin Hu. “Small molecule modulators of K eap1‐N rf2‐ARE pathway as potential preventive and therapeutic agents.” Medicinal research reviews 32, no. 4 (2012): 687-726. [CrossRef] [PubMed] [Google Scholar]
- Zhao, Fangfang, Jianlei Zhang, and Na Chang. “Epigenetic modification of Nrf2 by sulforaphane increases the antioxidative and anti-inflammatory capacity in a cellular model of Alzheimer’s disease.” European journal of pharmacology 824 (2018): 1-10. [CrossRef] [PubMed] [Google Scholar]
- Soane, Lucian, Wei Li Dai, Gary Fiskum, and Linda L. Bambrick. “Sulforaphane protects immature hippocampal neurons against death caused by exposure to hemin or to oxygen and glucose deprivation.” Journal of neuroscience research 88, no. 6 (2010): 1355-1363. [CrossRef] [PubMed] [Google Scholar]
- Lee, Chan, Gyu Hwan Park, Seong-Ryong Lee, and Jung-Hee Jang. “Attenuation of-amyloid-induced oxidative cell death by sulforaphane via activation of NF-E2-related factor 2.” Oxidative medicine and cellular longevity 2013 (2013). [Google Scholar]
- Alfieri, Alessio, Salil Srivastava, Richard CM Siow, Diana Cash, Michel Modo, Michael R. Duchen, Paul A. Fraser, Steven CR Williams, and Giovanni E. Mann. “Sulforaphane preconditioning of the Nrf2/HO-1 defense pathway protects the cerebral vasculature against blood–brain barrier disruption and neurological deficits in stroke.” Free Radical Biology and Medicine 65 (2013): 1012-1022. [CrossRef] [Google Scholar]
- Sedlak, Thomas W., Bindu D. Paul, Gregory M. Parker, Lynda D. Hester, Adele M. Snowman, Yu Taniguchi, Atsushi Kamiya, Solomon H. Snyder, and Akira Sawa. “The glutathione cycle shapes synaptic glutamate activity.” Proceedings of the National Academy of Sciences 116, no. 7 (2019): 2701-2706. [CrossRef] [PubMed] [Google Scholar]
- He, Feng, Xiaoli Ru, and Tao Wen. “NRF2, a transcription factor for stress response and beyond.” International journal of molecular sciences 21, no. 13 (2020): 4777. [CrossRef] [PubMed] [Google Scholar]
- Quispe, Ruth Liliám, Michael Lorenz Jaramillo, Leticia Selinger Galant, Daiane Engel, Alcir Luiz Dafre, João Batista Teixeira da Rocha, Rafael Radi, Marcelo Farina, and Andreza Fabro de Bem. “Diphenyl diselenide protects neuronal cells against oxidative stress and mitochondrial dysfunction: Involvement of the glutathione- dependent antioxidant system.” Redox biology 20 (2019): 118-129. [CrossRef] [PubMed] [Google Scholar]
- Nadeem, Ahmed, Sheikh F. Ahmad, Naif O. Al-Harbi, Sabry M. Attia, Saleh A. Bakheet, Khalid E. Ibrahim, Faleh Alqahtani, and Mohammed Alqinyah. “Nrf2 activator, sulforaphane ameliorates autism-like symptoms through suppression of Th17 related signaling and rectification of oxidant-antioxidant imbalance in periphery and brain of BTBR T+ tf/J mice.” Behavioural brain research 364 (2019): 213-224. [CrossRef] [PubMed] [Google Scholar]
- Saha, Sarmistha, Brigitta Buttari, Emiliano Panieri, Elisabetta Profumo, and Luciano Saso. “An overview of Nrf2 signaling pathway and its role in inflammation.” Molecules 25, no. 22 (2020): 5474. [CrossRef] [PubMed] [Google Scholar]
- Subedi, Lalita, Jae Hyuk Lee, Silvia Yumnam, Eunhee Ji, and Sun Yeou Kim. “Anti-inflammatory effect of sulforaphane on LPS-activated microglia potentially through JNK/AP-1/NF-κB inhibition and Nrf2/HO-1 activation.” Cells 8, no. 2 (2019): 194. [CrossRef] [PubMed] [Google Scholar]
- Behl, Tapan, Keshav Kumar, Ciprian Brisc, Marius Rus, Delia Carmen Nistor-Cseppento, Cristiana Bustea, Raluca Anca Corb Aron et al. “Exploring the multifocal role of phytochemicals as immunomodulators.” Biomedicine & Pharmacotherapy 133 (2021): 110959. [CrossRef] [Google Scholar]
- Sun, Jing, and Guangxian Nan. “The mitogen-activated protein kinase (MAPK) signaling pathway as a discovery target in stroke.” Journal of Molecular Neuroscience 59 (2016): 90-98. [CrossRef] [PubMed] [Google Scholar]
- Hernández-Rabaza, Vicente, Andrea Cabrera-Pastor, Lucas Taoro-González, Michele Malaguarnera, Ana Agustí, Marta Llansola, and Vicente Felipo. “Hyperammonemia induces glial activation, neuroinflammation and alters neurotransmitter receptors in hippocampus, impairing spatial learning: reversal by sulforaphane.” Journal of neuroinflammation 13 (2016): 1-11. [CrossRef] [PubMed] [Google Scholar]
- Sanjay W., Digvijay G., Walmik S., and Hitesh Vasudev, Plasticity Index a measure of dry sliding wear for Ni-based coating, Surface review and letters; https://doi.org/10.1142/S0218625X23400103 [Google Scholar]
- 63 Sharma, S. and Kumar, A., 2021. Recent advances in metallic corrosion inhibition: A review. Journal of Molecular Liquids, 322, p.114862. [CrossRef] [Google Scholar]
- 64 Garg, S.S., Gupta, J., Sharma, S. and Sahu, D., 2020. An insight into the therapeutic applications of coumarin compounds and their mechanisms of action. European Journal of Pharmaceutical Sciences, 152, p.105424. [CrossRef] [PubMed] [Google Scholar]
- 65 Kumar, H., Bhardwaj, K., Nepovimova, E., Kuča, K., Singh Dhanjal, D., Bhardwaj, S., Bhatia, S.K., Verma, R. and Kumar, D., 2020. Antioxidant functionalized nanoparticles: A combat against oxidative stress. Nanomaterials, 10(7), p.1334. [CrossRef] [PubMed] [Google Scholar]
- 66.Prashar, D., Jha, N., Jha, S., Lee, Y. and Joshi, G.P., 2020. Blockchain-based traceability and visibility for agricultural products: A decentralized way of ensuring food safety in india. Sustainability, 12(8), p.3497. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.