Open Access
Issue |
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
|
|
---|---|---|
Article Number | 01045 | |
Number of page(s) | 27 | |
DOI | https://doi.org/10.1051/bioconf/20248601045 | |
Published online | 12 January 2024 |
- Z. Ou et al., “Global trends in the incidence, prevalence, and years lived with disability of parkinson’s disease in 204 countries/territories from 1990 to 2019,” Front. public Heal., vol. 9, p. 776847, 2021. [CrossRef] [Google Scholar]
- L. Hirsch, N. Jette, A. Frolkis, T. Steeves, and T. Pringsheim, “The incidence of Parkinson’s disease: a systematic review and meta-analysis,” Neuroepidemiology, vol. 46, no. 4, pp. 292–300, 2016. [CrossRef] [PubMed] [Google Scholar]
- M. M. Abbas, Z. Xu, and L. C. S. Tan, “Epidemiology of Parkinson’s disease—east versus west,” Mov. Disord. Clin. Pract., vol. 5, no. 1, pp. 14–28, 2018. [CrossRef] [Google Scholar]
- D. K. Simon, C. M. Tanner, and P. Brundin, “Parkinson disease epidemiology, pathology, genetics, and pathophysiology,” Clin. Geriatr. Med., vol. 36, no. 1, pp. 1–12, 2020. [CrossRef] [Google Scholar]
- F. A. Scorza, A. C. G. de Almeida, C. A. Scorza, and J. Finsterer, “Prevention of Parkinson’s disease-related sudden death,” Clinics, vol. 76, 2021. [Google Scholar]
- S. Sveinbjornsdottir, “The clinical symptoms of Parkinson’s disease,” J. Neurochem., vol. 139, pp. 318–324, 2016. [CrossRef] [PubMed] [Google Scholar]
- A. Schrag, “Psychiatric aspects of Parkinson’s disease,” J. Neurol., vol. 251, no. 7, pp. 795–804, 2004. [CrossRef] [PubMed] [Google Scholar]
- A. Cherian and K. P. Divya, “Genetics of Parkinson’s disease,” Acta Neurol. Belg., vol. 120, no. 6, pp. 1297–1305, 2020. [CrossRef] [PubMed] [Google Scholar]
- J. E. Alty and P. A. Kempster, “A practical guide to the differential diagnosis of tremor,” Postgrad. Med. J., vol. 87, no. 1031, pp. 623–629, 2011. [Google Scholar]
- A. J. Espay, P. A. LeWitt, and H. Kaufmann, “Norepinephrine deficiency in Parkinson’s disease: the case for noradrenergic enhancement,” Mov. Disord., vol. 29, no. 14, pp. 1710–1719, 2014. [CrossRef] [PubMed] [Google Scholar]
- A.-A. Poirier, B. Aubé, M. Côté, N. Morin, T. Di Paolo, and D. Soulet, “Gastrointestinal dysfunctions in Parkinson’s disease: symptoms and treatments,” Park. Dis., vol. 2016, 2016. [Google Scholar]
- F. Moisan et al., “Parkinson disease male-to-female ratios increase with age: French nationwide study and meta-analysis,” J. Neurol. Neurosurg. Psychiatry, vol. 87, no. 9, pp. 952–957, 2016. [CrossRef] [PubMed] [Google Scholar]
- S. Cerri, L. Mus, and F. Blandini, “Parkinson’s Disease in Women and Men: What’s the Difference?,” J. Parkinsons. Dis., vol. 9, no. 3, pp. 501–515, 2019, doi: 10.3233/JPD-191683. [CrossRef] [Google Scholar]
- M. Huang et al., “Impact of Environmental Risk Factors on Mitochondrial Dysfunction, Neuroinflammation, Protein Misfolding, and Oxidative Stress in the Etiopathogenesis of Parkinson’s Disease,” Int. J. Mol. Sci., vol. 23, no. 18, p. 10808, 2022. [CrossRef] [Google Scholar]
- S. de la Monte and A. Goel, “Agent Orange Reviewed: Potential Role in Peripheral Neuropathy and Neurodegeneration.,” J. Mil. Veterans’ Heal., vol. 30, no. 2, 2022. [Google Scholar]
- H. Chen, K. Wang, F. Scheperjans, and B. Killinger, “Environmental triggers of Parkinson’s disease-- Implications of the Braak and dual-hit hypotheses,” Neurobiol. Dis., vol. 163, p. 105601, 2022. [CrossRef] [Google Scholar]
- S. Jafari, M. Etminan, F. Aminzadeh, and A. Samii, “Head injury and risk of Parkinson disease: a systematic review and meta-analysis,” Mov. Disord., vol. 28, no. 9, pp. 1222–1229, 2013. [CrossRef] [PubMed] [Google Scholar]
- A. Masato, N. Plotegher, D. Boassa, and L. Bubacco, “Impaired dopamine metabolism in Parkinson’s disease pathogenesis,” Mol. Neurodegener., vol. 14, no. 1, pp. 1–21, 2019. [CrossRef] [Google Scholar]
- M. Bortolato, K. Chen, and J. C. Shih, “Monoamine oxidase inactivation: from pathophysiology to therapeutics.,” Adv. Drug Deliv. Rev., vol. 60, no. 13–14, pp. 1527–1533, 2008, doi: 10.1016/j.addr.2008.06.002. [CrossRef] [Google Scholar]
- L. A. Pham-Huy, H. He, and C. Pham-Huy, “Free radicals, antioxidants in disease and health.,” Int. J. Biomed. Sci., vol. 4, no. 2, pp. 89–96, Jun. 2008. [CrossRef] [Google Scholar]
- B. G. Trist, D. J. Hare, and K. L. Double, “Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease,” Aging Cell, vol. 18, no. 6, p. e13031, 2019. [CrossRef] [PubMed] [Google Scholar]
- C. A. Juan, J. M. de la Lastra, F. J. Plou, and E. Pérez-Lebeña, “The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies,” Int. J. Mol. Sci., vol. 22, no. 9, p. 4642, 2021. [CrossRef] [Google Scholar]
- Q. Ye, B. Huang, X. Zhang, Y. Zhu, and X. Chen, “Astaxanthin protects against MPP +-induced oxidative stress in PC12 cells via the HO-1/ NOX2 axis,” 2012. [Online]. Available: http://www.biomedcentral.com/1471-2202/13/156. [Google Scholar]
- D. H. Choi et al., “NADPH oxidase 1-mediated oxidative stress leads to dopamine neuron death in Parkinson’s disease,” Antioxidants Redox Signal., vol. 16, no. 10, pp. 1033–1045, 2012, doi: 10.1089/ars.2011.3960. [CrossRef] [PubMed] [Google Scholar]
- S. H. Chen, E. A. Oyarzabal, and J. S. Hong, “Critical role of the Mac1/NOX2 pathway in mediating reactive microgliosis-generated chronic neuroinflammation and progressive neurodegeneration,” Current Opinion in Pharmacology, vol. 26. Elsevier Ltd, pp. 54–60, 2016, doi: 10.1016/j.coph.2015.10.001. [Google Scholar]
- L. Stefanis, “α-Synuclein in Parkinson’s disease,” Cold Spring Harb. Perspect. Med., vol. 2, no. 2, p. a009399, 2012. [CrossRef] [Google Scholar]
- S. N. Gomperts, “Lewy body dementias: dementia with Lewy bodies and Parkinson disease dementia,” Contin. Lifelong Learn. Neurol., vol. 22, no. 2 Dementia, p. 435, 2016. [CrossRef] [PubMed] [Google Scholar]
- Y. Yang et al., “Structures of α-synuclein filaments from human brains with Lewy pathology,” Nature, vol. 610, no. 7933, pp. 791–795, 2022. [CrossRef] [PubMed] [Google Scholar]
- M. F. Schmidt, Z. Y. Gan, D. Komander, and G. Dewson, “Ubiquitin signalling in neurodegeneration: mechanisms and therapeutic opportunities,” Cell Death Differ., vol. 28, no. 2, pp. 570–590, 2021. [CrossRef] [PubMed] [Google Scholar]
- A. M. Pickrell and R. J. Youle, “The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease,” Neuron, vol. 85, no. 2, pp. 257–273, 2015. [CrossRef] [PubMed] [Google Scholar]
- Y. Liu, L. Fallon, H. A. Lashuel, Z. Liu, and P. T. Lansbury Jr, “The UCH-L1 gene encodes two opposing enzymatic activities that affect α-synuclein degradation and Parkinson’s disease susceptibility,” Cell, vol. 111, no. 2, pp. 209–218, 2002. [CrossRef] [PubMed] [Google Scholar]
- D. Ebrahimi-Fakhari, L. Wahlster, and P. J. McLean, “Protein degradation pathways in Parkinson’s disease: Curse or blessing,” Acta Neuropathologica, vol. 124, no. 2. pp. 153–172, 2012, doi: 10.1007/s00401-012-1004-6. [CrossRef] [PubMed] [Google Scholar]
- F. Fornai et al., “Parkinson-like syndrome induced by continuous MPTP infusion: Convergent roles of the ubiquitin-proteasome system and-synuclein,” 2004. [Online]. Available: http://www.pnas.orgcgidoi10.1073pnas.0409713102. [Google Scholar]
- A. P. Chou, S. Li, A. G. Fitzmaurice, and J. M. Bronstein, “Mechanisms of rotenone-induced proteasome inhibition,” Neurotoxicology, vol. 31, no. 4, pp. 367–372, 2010, doi: 10.1016/j.neuro.2010.04.006. [CrossRef] [PubMed] [Google Scholar]
- X. F. Wang, S. Li, A. P. Chou, and J. M. Bronstein, “Inhibitory effects of pesticides on proteasome activity: Implication in Parkinson’s disease,” Neurobiol. Dis., vol. 23, no. 1, pp. 198–205, 2006, doi: 10.1016/j.nbd.2006.02.012. [CrossRef] [Google Scholar]
- B. Y. Zeng et al., “MPTP treatment of common marmosets impairs proteasomal enzyme activity and decreases expression of structural and regulatory elements of the 26S proteasome,” Eur. J. Neurosci., vol. 23, no. 7, pp. 1766–1774, 2006, doi: 10.1111/j.1460-9568.2006.04718.x. [CrossRef] [PubMed] [Google Scholar]
- P. Anglade et al., “Histology and Histopathology Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease,” 1997. [Google Scholar]
- D. A. Dewitt, G. Perry, M. Cohen, C. Doller, and J. Silver, “Astrocytes Regulate Microglial Phagocytosis of Senile Plaque Cores of Alzheimer’s Disease,” 1998. [Google Scholar]
- C. Y. D. Lee and G. E. Landreth, “The role of microglia in amyloid clearance from the AD brain,” Journal of Neural Transmission, vol. 117, no. 8. pp. 949–960, 2010, doi: 10.1007/s00702-010-0433-4. [CrossRef] [PubMed] [Google Scholar]
- R. A. Fuentealba et al., “Low-density lipoprotein receptor-related protein 1 (LRP1) mediates neuronal Aβ42 uptake and lysosomal trafficking,” PLoS One, vol. 5, no. 7, 2010, doi: 10.1371/journal.pone.0011884. [Google Scholar]
- J. L. Webb, B. Ravikumar, J. Atkins, J. N. Skepper, and D. C. Rubinsztein, “α-synuclein Is Degraded by Both Autophagy and the Proteasome,” J. Biol. Chem., vol. 278, no. 27, pp. 25009–25013, 2003, doi: 10.1074/jbc.M300227200. [CrossRef] [Google Scholar]
- A. M. Cuervo, L. Stefanis, R. Fredenburg, P. T. Lansbury, and D. Sulzer, “Impaired degradation of mutant α- synuclein by chaperone-mediated autophagy,” Science (80-. )., vol. 305, no. 5688, pp. 1292–1295, 2004. [CrossRef] [PubMed] [Google Scholar]
- G. K. Tofaris, R. Lay¢eld, and M. G. Spillantini, “K-Synuclein metabolism and aggregation is linked to ubiquitin-independent degradation by the proteasome,” 2001. [Google Scholar]
- B. Spencer et al., “Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in α-synuclein models of Parkinson’s and Lewy body diseases,” J. Neurosci., vol. 29, no. 43, pp. 13578–13588, 2009. [CrossRef] [PubMed] [Google Scholar]
- F. Cicchetti, A. L. Brownell, K. Williams, Y. I. Chen, E. Livni, and O. Isacson, “Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging,” 2002. [Google Scholar]
- J. J. Locascio et al., “α-Synuclein and tau concentrations in cerebrospinal fl uid of patients presenting with parkinsonism: a cohort study,” www.thelancet.com/neurology, vol. 10, 2011, doi: 10.1016/S1474. [Google Scholar]
- A. P. Gatt, O. F. Duncan, J. Attems, P. T. Francis, C. G. Ballard, and J. M. Bateman, “Dementia in Parkinson’s disease is associated with enhanced mitochondrial complex I deficiency,” Mov. Disord., vol. 31, no. 3, pp. 352–359, 2016, doi: 10.1002/mds.26513. [CrossRef] [Google Scholar]
- P. M. Keeney, J. Xie, R. A. Capaldi, and J. P. Bennett, “Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled,” J. Neurosci., vol. 26, no. 19, pp. 5256–5264, 2006, doi: 10.1523/JNEUROSCI.0984-06.2006. [CrossRef] [PubMed] [Google Scholar]
- R. Bajracharya, N. A. Youngson, and J. W. O. Ballard, “Dietary macronutrient management to treat mitochondrial dysfunction in parkinson’s disease,” Int. J. Mol. Sci., vol. 20, no. 8, 2019, doi: 10.3390/ijms20081850. [CrossRef] [Google Scholar]
- B. H. Robinson, “Human Complex I deficiency: Clinical spectrum and involvement of oxygen free radicals in the pathogenicity of the defect,” 1998. [Google Scholar]
- L. A. Bindoff, M. A. Birch-Machin, N. E. F. Cartlidge, W. D. Parker, and D. M. Turnbull, “Respiratory chain abnormalities in skeletal muscle from patients with Parkinson’s disease,” 1991. [Google Scholar]
- M. Müftüoglu et al., “Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations,” Mov. Disord., vol. 19, no. 5, pp. 544–548, 2004, doi: 10.1002/mds.10695. [CrossRef] [PubMed] [Google Scholar]
- C. Raza, R. Anjum, and others, “Parkinson’s disease: Mechanisms, translational models and management strategies,” Life Sci., vol. 226, pp. 77–90, 2019. [CrossRef] [Google Scholar]
- A. H. V. Schapira, “Mitochondrial dysfunction in Parkinson’s disease,” Cell Death and Differentiation, vol. 14, no. 7. pp. 1261–1266, 2007, doi: 10.1038/sj.cdd.4402160. [CrossRef] [PubMed] [Google Scholar]
- M. T. Lin et al., “Somatic Mitochondrial DNA Mutations in Early Parkinson and Incidental Lewy Body Disease,” 2012, doi: 10.1002/ana. [Google Scholar]
- S. J. Chinta, J. K. Mallajosyula, A. Rane, and J. K. Andersen, “Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo,” Neurosci. Lett., vol. 486, no. 3, pp. 235–239, 2010, doi: 10.1016/j.neulet.2010.09.061. [CrossRef] [Google Scholar]
- R. K. Dagda, S. J. Cherra, S. M. Kulich, A. Tandon, D. Park, and C. T. Chu, “Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission,” J. Biol. Chem., vol. 284, no. 20, pp. 13843–13855, 2009, doi: 10.1074/jbc.M808515200. [CrossRef] [Google Scholar]
- N. Exner et al., “Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin,” J. Neurosci., vol. 27, no. 45, pp. 12413–12418, 2007, doi: 10.1523/JNEUROSCI.0719-07.2007. [CrossRef] [PubMed] [Google Scholar]
- N. Hattori and Y. Mizuno, “Mitochondrial dysfunction in Parkinson’s disease,” Nippon rinsho. Japanese journal of clinical medicine, vol. 60 Suppl 4. pp. 406–411, 2002, doi: 10.5607/en.2015.24.2.103. [Google Scholar]
- J. M. Heo and J. Rutter, “Ubiquitin-dependent mitochondrial protein degradation,” International Journal of Biochemistry and Cell Biology, vol. 43, no. 10. Elsevier Ltd, pp. 1422–1426, 2011, doi: 10.1016/j.biocel.2011.06.002. [CrossRef] [Google Scholar]
- R. Niranjan, “The Role of inflammatory and oxidative stress mechanisms in the pathogenesis of parkinson’s disease: Focus on astrocytes,” Molecular Neurobiology, vol. 49, no. 1. Humana Press Inc., pp. 28–38, 2014, doi: 10.1007/s12035-013-8483-x. [CrossRef] [PubMed] [Google Scholar]
- H. González, D. Elgueta, A. Montoya, and R. Pacheco, “Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases,” Journal of Neuroimmunology, vol. 274, no. 1–2. Elsevier B.V., pp. 1–13, 2014, doi: 10.1016/j.jneuroim.2014.07.012. [CrossRef] [PubMed] [Google Scholar]
- M. M. M. Wilhelmus, P. G. Nijland, B. Drukarch, H. E. De Vries, and J. Van Horssen, “Involvement and interplay of Parkin, PINK1, and DJ1 in neurodegenerative and neuroinflammatory disorders,” Free Radical Biology and Medicine, vol. 53, no. 4. pp. 983–992, 2012, doi: 10.1016/j.freeradbiomed.2012.05.040. [CrossRef] [Google Scholar]
- E. C. Hirsch, S. Hunot, and A. Hartmann, “Neuroinflammatory processes in Parkinson’s disease,” in Parkinsonism and Related Disorders, 2005, vol. 11, no. SUPPL. 1, doi: 10.1016/j.parkreldis.2004.10.013. [Google Scholar]
- P. Teismann, “COX-2 in the neurodegenerative process of Parkinson’s disease,” BioFactors, vol. 38, no. 6. pp. 395–397, 2012, doi: 10.1002/biof.1035. [CrossRef] [PubMed] [Google Scholar]
- J. Miklossy, D. D. Doudet, C. Schwab, S. Yu, E. G. McGeer, and P. L. McGeer, “Role of ICAM-1 in persisting inflammation in Parkinson disease and MPTP monkeys,” Exp. Neurol., vol. 197, no. 2, pp. 275–283, 2006, doi: 10.1016/j.expneurol.2005.10.034. [CrossRef] [Google Scholar]
- V. Brochard et al., “Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease,” J. Clin. Invest., vol. 119, no. 1, pp. 182–192, 2009, doi: 10.1172/JCI36470. [Google Scholar]
- E. C. Hirsch and S. Hunot, “Neuroinflammation in Parkinson’s disease: a target for neuroprotection?,” The Lancet Neurology, vol. 8, no. 4. pp. 382–397, 2009, doi: 10.1016/S1474-4422(09)70062-6. [CrossRef] [PubMed] [Google Scholar]
- D. C. Wu et al., “Glial cell response: A pathogenic factor in Parkinson’s disease,” Journal of NeuroVirology, vol. 8, no. 6. pp. 551–558, 2002, doi: 10.1080/13550280290100905. [CrossRef] [PubMed] [Google Scholar]
- N. Rebola, B. N. Srikumar, and C. Mulle, “Activity-dependent synaptic plasticity of NMDA receptors,” Journal of Physiology, vol. 588, no. 1. pp. 93–99, 2010, doi: 10.1113/jphysiol.2009.179382. [CrossRef] [PubMed] [Google Scholar]
- M. P. Parsons and L. A. Raymond, “Extrasynaptic NMDA receptor involvement in central nervous system disorders,” Neuron, vol. 82, no. 2, pp. 279–293, 2014. [CrossRef] [PubMed] [Google Scholar]
- A. M. Kaufman et al., “Opposing roles of synaptic and extrasynaptic NMDA receptor signaling in cocultured striatal and cortical neurons,” J. Neurosci., vol. 32, no. 12, pp. 3992–4003, 2012, doi:10.1523/JNEUROSCI.4129-11.2012. [CrossRef] [PubMed] [Google Scholar]
- C. Barcia et al., “Erratum: IFN-γ signaling, with the synergistic contribution of TNF-α, mediates cell specific microglial and astroglial activation in experimental models of Parkinson’s diseas (Cell Death and Disease (2011) 2 (e142) 10.1038/cddis.2011.17),” Cell Death and Disease, vol. 3, no. 8. 2012, doi: 10.1038/cddis.2012.123. [Google Scholar]
- G. Ambrosi, S. Cerri, and F. Blandini, “A further update on the role of excitotoxicity in the pathogenesis of Parkinson’s disease,” J. Neural Transm., vol. 121, no. 8, pp. 849–859, 2014, doi: 10.1007/s00702-013-1149-z. [CrossRef] [PubMed] [Google Scholar]
- M. Noda, “Possible Contribution of Microglial Glutamate Receptors to Inflammatory Response upon Neurodegenerative Diseases,” J. Neurol. Disord., vol. 01, no. 03, 2013, doi: 10.4172/2329-6895.1000131. [CrossRef] [Google Scholar]
- R. Niesche and M. Haase, “Emotions and Ethics: A Foucauldian framework for becoming an ethical educator,” Educ. Philos. Theory, vol. 44, no. 3, pp. 276–288, 2012, doi: 10.1111/j.1469-5812.2010.00655.x. [CrossRef] [Google Scholar]
- S. Feng et al., “Sulforaphane Prevents Methylmercury-Induced Oxidative Damage and Excitotoxicity Through Activation of the Nrf2-ARE Pathway,” Mol. Neurobiol., vol. 54, no. 1, pp. 375–391, 2017, doi: 10.1007/s12035-015-9643-y. [CrossRef] [PubMed] [Google Scholar]
- H. H. Kampinga and S. Bergink, “Heat shock proteins as potential targets for protective strategies in neurodegeneration,” Lancet Neurol., vol. 15, no. 7, pp. 748–759, 2016. [CrossRef] [Google Scholar]
- H. H. Kampinga et al., “Guidelines for the nomenclature of the human heat shock proteins,” Cell Stress Chaperones, vol. 14, no. 1, pp. 105–111, 2009. [CrossRef] [PubMed] [Google Scholar]
- S. K. Calderwood, A. Murshid, and T. Prince, “The shock of aging: molecular chaperones and the heat shock response in longevity and aging--a mini-review,” Gerontology, vol. 55, no. 5, pp. 550–558, 2009. [CrossRef] [PubMed] [Google Scholar]
- R. I. Morimoto, “Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators,” Genes Dev., vol. 12, no. 24, pp. 3788–3796, 1998. [CrossRef] [PubMed] [Google Scholar]
- P. K. Auluck, H. Y. E. Chan, J. Q. Trojanowski, V. M.-Y. Lee, and N. M. Bonini, “Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson’s disease,” Science (80-. )., vol. 295, no. 5556, pp. 865–868, 2002. [CrossRef] [PubMed] [Google Scholar]
- P. J. McLean et al., “TorsinA and heat shock proteins act as molecular chaperones: suppression of α- synuclein aggregation,” J. Neurochem., vol. 83, no. 4, pp. 846–854, 2002. [CrossRef] [PubMed] [Google Scholar]
- P. K. Auluck, G. Caraveo, and S. Lindquist, “α-Synuclein: membrane interactions and toxicity in Parkinson’s disease,” Annu. Rev. Cell Dev. Biol., vol. 26, no. 1, pp. 211–233, 2010. [CrossRef] [PubMed] [Google Scholar]
- T. R. Flower, L. S. Chesnokova, C. A. Froelich, C. Dixon, and S. N. Witt, “Heat shock prevents alpha- synuclein-induced apoptosis in a yeast model of Parkinson’s disease,” J. Mol. Biol., vol. 351, no. 5, pp. 1081–1100, 2005. [CrossRef] [Google Scholar]
- P. Aridon, F. Geraci, G. Turturici, M. D’Amelio, G. Savettieri, and G. Sconzo, “Protective role of heat shock proteins in Parkinson’s disease,” Neurodegener. Dis., vol. 8, no. 4, pp. 155–168, 2011. [CrossRef] [PubMed] [Google Scholar]
- S. Bose and J. Cho, “Targeting chaperones, heat shock factor-1, and unfolded protein response: Promising therapeutic approaches for neurodegenerative disorders,” Ageing Res. Rev., vol. 35, pp. 155–175, 2017. [CrossRef] [Google Scholar]
- P. Goloubinoff and P. De Los Rios, “The mechanism of Hsp70 chaperones:(entropic) pulling the models together,” Trends Biochem. Sci., vol. 32, no. 8, pp. 372–380, 2007. [CrossRef] [Google Scholar]
- O. Hantschel and G. Superti-Furga, “Regulation of the c-Abl and Bcr--Abl tyrosine kinases,” Nat. Rev. Mol. cell Biol., vol. 5, no. 1, pp. 33–44, 2004. [CrossRef] [PubMed] [Google Scholar]
- S. Gonfloni, E. Maiani, C. Di Bartolomeo, M. Diederich, and G. Cesareni, “Oxidative stress, DNA damage, and c-Abl signaling: at the crossroad in neurodegenerative diseases?,” Int. J. Cell Biol., vol. 2012, 2012. [CrossRef] [Google Scholar]
- A.-L. Mahul-Mellier et al., “c-Abl phosphorylates α-synuclein and regulates its degradation: implication for α-synuclein clearance and contribution to the pathogenesis of Parkinson’s disease,” Hum. Mol. Genet., vol. 23, no. 11, pp. 2858–2879, 2014. [CrossRef] [PubMed] [Google Scholar]
- A. I. Abushouk et al., “C-Abl inhibition; a novel therapeutic target for Parkinson’s disease,” CNS Neurol. Disord. Targets (Formerly Curr. Drug Targets-CNS Neurol. Disord., vol. 17, no. 1, pp. 14–21, 2018. [CrossRef] [Google Scholar]
- A. A. Nierenberg, S. A. Ghaznavi, I. S. Mathias, K. K. Ellard, J. A. Janos, and L. G. Sylvia, “Peroxisome proliferator-activated receptor gamma coactivator-1 alpha as a novel target for bipolar disorder and other neuropsychiatric disorders,” Biol. Psychiatry, vol. 83, no. 9, pp. 761–769, 2018. [CrossRef] [Google Scholar]
- P. O. Hassa, S. S. Haenni, M. Elser, and M. O. Hottiger, “Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going?,” Microbiol. Mol. Biol. Rev., vol. 70, no. 3, pp. 789–829, 2006. [CrossRef] [PubMed] [Google Scholar]
- S. Brahmachari et al., “c-Abl and Parkinson’s Disease: Mechanisms and Therapeutic Potential.,” J. Parkinsons. Dis., vol. 7, no. 4, pp. 589–601, 2017, doi: 10.3233/JPD-171191. [CrossRef] [Google Scholar]
- J. M. Suárez-Rivero et al., “Coenzyme Q(10) Analogues: Benefits and Challenges for Therapeutics.,” Antioxidants (Basel, Switzerland), vol. 10, no. 2, Feb. 2021, doi: 10.3390/antiox10020236. [Google Scholar]
- L. A. R. Lima et al., “Vitamin D protects dopaminergic neurons against neuroinflammation and oxidative stress in hemiparkinsonian rats.,” J. Neuroinflammation, vol. 15, no. 1, p. 249, Aug. 2018, doi: 10.1186/s12974-018-1266-6. [CrossRef] [Google Scholar]
- H. Kaur, S. Chauhan, and R. Sandhir, “Protective effect of lycopene on oxidative stress and cognitive decline in rotenone induced model of Parkinson’s disease,” Neurochem. Res., vol. 36, no. 8, pp. 1435–1443, 2011, doi: 10.1007/s11064-011-0469-3. [CrossRef] [PubMed] [Google Scholar]
- K. Muzandu et al., “Effect of lycopene and β-carotene on peroxynitrite-mediated cellular modifications,” Toxicol. Appl. Pharmacol., vol. 215, no. 3, pp. 330–340, 2006. [CrossRef] [Google Scholar]
- M. Srinivasan, A. R. Sudheer, K. R. Pillai, P. R. Kumar, P. R. Sudhakaran, and V. P. Menon, “Lycopene as a natural protector against γ-radiation induced DNA damage, lipid peroxidation and antioxidant status in primary culture of isolated rat hepatocytes in vitro,” Biochim. Biophys. Acta (BBA)-General Subj., vol. 1770, no. 4, pp. 659–665, 2007. [CrossRef] [Google Scholar]
- I. A. Castro, M. M. Rogero, R. M. Junqueira, and M. M. Carrapeiro, “Free radical scavenger and antioxidant capacity correlation of alpha-tocopherol and Trolox measured by three in vitro methodologies.,” Int. J. Food Sci. Nutr., vol. 57, no. 1–2, pp. 75–82, 2006, doi: 10.1080/09637480600656199. [CrossRef] [PubMed] [Google Scholar]
- M. Etminan, S. S. Gill, and A. Samii, “Intake of E, vitamin C, and carotenoids and the risk of Parkinson’s disease: a meta-analysis,” Lancet Neurol., vol. 4, no. 6, pp. 362–365, 2005. [CrossRef] [Google Scholar]
- W. L. Scheider, L. A. Hershey, J. E. Vena, T. Holmlund, J. R. Marshall, and J. L. Freudenheim, “Dietary antioxidants and other dietary factors in the etiology of Parkinson’s disease,” Mov. Disord., vol. 12, no. 2, pp. 190–196, 1997. [CrossRef] [PubMed] [Google Scholar]
- I. Shoulson, “Deprenyl and tocopherol antioxidative therapy of parkinsonism (DATATOP),” Acta Neurol. Scand., vol. 80, pp. 171–175, 1989. [CrossRef] [Google Scholar]
- Y. Zhao, Q. Wang, Y. Wang, J. Li, G. Lu, and Z. Liu, “Glutamine protects against oxidative stress injury through inhibiting the activation of PI3K/Akt signaling pathway in parkinsonian cell model.,” Environ. Health Prev. Med., vol. 24, no. 1, p. 4, Jan. 2019, doi: 10.1186/s12199-018-0757-5. [CrossRef] [PubMed] [Google Scholar]
- E. Kvamme, B. Roberg, and I. A. Torgner, “Glutamine transport in brain mitochondria,” Neurochem. Int., vol. 37, no. 2–3, pp. 131–138, 2000. [CrossRef] [Google Scholar]
- E. Verdin, “NAD+ in aging, metabolism, and neurodegeneration,” Science (80-. )., vol. 350, no. 6265, pp. 1208–1213, 2015. [CrossRef] [PubMed] [Google Scholar]
- C. Shan et al., “Protective effects of β-nicotinamide adenine dinucleotide against motor deficits and dopaminergic neuronal damage in a mouse model of Parkinson’s disease,” Prog. Neuro- Psychopharmacology Biol. Psychiatry, vol. 94, p. 109670, 2019. [CrossRef] [Google Scholar]
- A. Santamaría et al., “Systemic dl-Kynurenine and probenecid pretreatment attenuates quinolinic acid- induced neurotoxicity in rats,” Neuropharmacology, vol. 35, no. 1, pp. 23–28, 1996, doi: https://doi.org/10.1016/0028-3908(95)00145-X. [CrossRef] [PubMed] [Google Scholar]
- A. L. Colín-González, A. Luna-López, M. Königsberg, S. F. Ali, J. Pedraza-Chaverrí, and A. Santamaría, “Early modulation of the transcription factor Nrf2 in rodent striatal slices by quinolinic acid, a toxic metabolite of the kynurenine pathway,” Neuroscience, vol. 260, pp. 130–139, 2014, doi: https://doi.org/10.1016/j.neuroscience.2013.12.025. [CrossRef] [PubMed] [Google Scholar]
- A. Venditti and A. Bianco, “Sulfur-containing secondary metabolites as neuroprotective agents,” Curr. Med. Chem., vol. 27, no. 26, pp. 4421–4436, 2020. [CrossRef] [Google Scholar]
- M. Martínez, N. Martínez, A. I. Hernández, and M. L. Ferrándiz, “Hypothesis: can N-acetylcysteine be beneficial in Parkinson’s disease?,” Life Sci., vol. 64, no. 15, pp. 1253–1257, 1999. [CrossRef] [Google Scholar]
- A. Bendich, “The safety of β-carotene,” Nutr. Cancer, vol. 11, no. 4, pp. 207–214, 1988. [CrossRef] [PubMed] [Google Scholar]
- H. Gerster, “The potential role of lycopene for human health.,” J. Am. Coll. Nutr., vol. 16, no. 2, pp. 109–126, 1997. [CrossRef] [PubMed] [Google Scholar]
- S. Choi and H. Kim, “The remedial potential of lycopene in pancreatitis through regulation of autophagy,” Int. J. Mol. Sci., vol. 21, no. 16, p. 5775, 2020. [CrossRef] [Google Scholar]
- A. Freischmidt, K. Müller, A. C. Ludolph, J. H. Weishaupt, and P. M. Andersen, “Association of mutations in TBK1 with sporadic and familial amyotrophic lateral sclerosis and frontotemporal dementia,” JAMA Neurol., vol. 74, no. 1, pp. 110–113, 2017. [CrossRef] [PubMed] [Google Scholar]
- A. Catanese et al., “Retinoic acid worsens ATG10-dependent autophagy impairment in TBK1-mutant hiPSC- derived motoneurons through SQSTM1/p62 accumulation,” Autophagy, vol. 15, no. 10, pp. 1719–1737, 2019. [CrossRef] [PubMed] [Google Scholar]
- E. Hantikainen et al., “Dietary antioxidants and the risk of Parkinson disease: the Swedish National March Cohort,” Neurology, vol. 96, no. 6, pp. e895--e903, 2021. [CrossRef] [PubMed] [Google Scholar]
- T. Q. Pham, F. Cormier, E. Farnworth, V. H. Tong, and M.-R. Van Calsteren, “Antioxidant properties of crocin from Gardenia jasminoides Ellis and study of the reactions of crocin with linoleic acid and crocin with oxygen,” J. Agric. Food Chem., vol. 48, no. 5, pp. 1455–1461, 2000. [CrossRef] [PubMed] [Google Scholar]
- A. P. Duarte-Jurado et al., “Antioxidant therapeutics in Parkinson’s disease: current challenges and opportunities,” Antioxidants, vol. 10, no. 3, p. 453, 2021. [CrossRef] [PubMed] [Google Scholar]
- H. Liu et al., “Effect of plasma vitamin C levels on Parkinson’s disease and age at onset: a Mendelian randomization study,” J. Transl. Med., vol. 19, no. 1, pp. 1–9, 2021. [CrossRef] [Google Scholar]
- S. Rakowski Michał and Porębski and A. Grzelak, “Nutraceuticals as Modulators of Autophagy: Relevance in Parkinson’s Disease,” Int. J. Mol. Sci., vol. 23, no. 7, p. 3625, 2022. [CrossRef] [Google Scholar]
- R. Kones, “Parkinsong’s disease: Mitochondrial molecular pathology, inflammation, statins, and therapeutic neuroprotective nutrition,” Nutrition in Clinical Practice, vol. 25, no. 4. pp. 371–389, 2010, doi: 10.1177/0884533610373932. [CrossRef] [PubMed] [Google Scholar]
- J. M. Lawler, W. S. Barnes, G. Wu, W. Song, and S. Demaree, “Direct antioxidant properties of creatine,” Biochem. Biophys. Res. Commun., vol. 290, no. 1, pp. 47–52, 2002. [CrossRef] [Google Scholar]
- C. Rae, A. L. Digney, S. R. McEwan, and T. C. Bates, “Oral creatine monohydrate supplementation improves brain performance: a double--blind, placebo--controlled, cross--over trial,” Proc. R. Soc. London. Ser. B Biol. Sci., vol. 270, no. 1529, pp. 2147–2150, 2003. [CrossRef] [PubMed] [Google Scholar]
- H. Jia et al., “High doses of nicotinamide prevent oxidative mitochondrial dysfunction in a cellular model and improve motor deficit in a Drosophila model of Parkinson’s disease,” J. Neurosci. Res., vol. 86, no. 9, pp. 2083–2090, 2008, doi: 10.1002/jnr.21650. [CrossRef] [PubMed] [Google Scholar]
- G. Patki and Y.-S. Lau, “Melatonin protects against neurobehavioral and mitochondrial deficits in a chronic mouse model of Parkinson’s disease,” Pharmacol. Biochem. Behav., vol. 99, no. 4, pp. 704–711, 2011. [CrossRef] [Google Scholar]
- J. C. Mayo, R. M. Sainz, D.-X. Tan, I. Antolín, C. Rodríguez, and R. J. Reiter, “Melatonin and Parkinson’s disease,” Endocrine, vol. 27, no. 2, pp. 169–178, 2005. [CrossRef] [PubMed] [Google Scholar]
- A. D. Kraft, D. A. Johnson, and J. A. Johnson, “Nuclear Factor E2-Related Factor 2-Dependent Antioxidant Response Element Activation by tert-Butylhydroquinone and Sulforaphane Occurring Preferentially in Astrocytes Conditions Neurons against Oxidative Insult,” J. Neurosci., vol. 24, no. 5, pp. 1101–1112, 2004, doi: 10.1523/JNEUROSCI.3817-03.2004. [CrossRef] [PubMed] [Google Scholar]
- M. Negrette-Guzmán et al., “Sulforaphane attenuates gentamicin-induced nephrotoxicity: role of mitochondrial protection,” Evidence-Based Complement. Altern. Med., vol. 2013, 2013. [CrossRef] [Google Scholar]
- R. Calvello et al., “Vitamin D Treatment Attenuates Neuroinflammation and Dopaminergic Neurodegeneration in an Animal Model of Parkinson’s Disease, Shifting M1 to M2 Microglia Responses,” J. Neuroimmune Pharmacol., vol. 12, no. 2, pp. 327–339, 2017, doi: 10.1007/s11481-016-9720-7. [CrossRef] [PubMed] [Google Scholar]
- J. Yu et al., “Vitamin D 3-enriched diet correlates with a decrease of amyloid plaques in the brain of AβPP transgenic mice,” J. Alzheimer’s Dis., vol. 25, no. 2, pp. 295–307, 2011. [CrossRef] [Google Scholar]
- K. S. Kyung, J. H. Gon, K. Y. Geun, J. J. Sup, W. J. Suk, and K. J. Ho, “6-Shogaol, a natural product, reduces cell death and restores motor function in rat spinal cord injury,” Eur. J. Neurosci., vol. 24, no. 4, pp. 1042–1052, 2006. [CrossRef] [PubMed] [Google Scholar]
- S. Shim, S. Kim, Y.-B. Kwon, and J. Kwon, “Protection by [6]-shogaol against lipopolysaccharide-induced toxicity in murine astrocytes is related to production of brain-derived neurotrophic factor,” Food Chem. Toxicol., vol. 50, no. 3–4, pp. 597–602, 2012. [CrossRef] [Google Scholar]
- E. Esposito, D. Impellizzeri, E. Mazzon, I. Paterniti, and S. Cuzzocrea, “Neuroprotective activities of palmitoylethanolamide in an animal model of Parkinson’s disease,” PLoS One, vol. 7, no. 8, 2012, doi: 10.1371/journal.pone.0041880. [Google Scholar]
- L. Facci, R. Dal Toso, S. Romanello, A. Buriani, S. D. Skaper, and A. Leon, “Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide and palmitoylethanolamide.,” Proc. Natl. Acad. Sci., vol. 92, no. 8, pp. 3376–3380, 1995. [CrossRef] [PubMed] [Google Scholar]
- J. Lo Verme et al., “The nuclear receptor peroxisome proliferator-activated receptor-α mediates the anti- inflammatory actions of palmitoylethanolamide,” Mol. Pharmacol., vol. 67, no. 1, pp. 15–19, 2005. [CrossRef] [PubMed] [Google Scholar]
- J. LoVerme et al., “Rapid broad-spectrum analgesia through activation of peroxisome proliferator-activated receptor-α,” J. Pharmacol. Exp. Ther., vol. 319, no. 3, pp. 1051–1061, 2006. [CrossRef] [PubMed] [Google Scholar]
- E. L. Robb and J. A. Stuart, “Trans-resveratrol as a neuroprotectant,” Molecules, vol. 15, no. 3, pp. 1196–1212, 2010, doi: 10.3390/molecules15031196. [CrossRef] [PubMed] [Google Scholar]
- H. Zhang, G. P. Schools, T. Lei, W. Wang, H. K. Kimelberg, and M. Zhou, “Resveratrol attenuates early pyramidal neuron excitability impairment and death in acute rat hippocampal slices caused by oxygen-glucose deprivation,” Exp. Neurol., vol. 212, no. 1, pp. 44–52, 2008, doi: 10.1016/j.expneurol.2008.03.006. [CrossRef] [Google Scholar]
- Q. Wang, S. Yu, A. Simonyi, G. Rottinghaus, G. Y. Sun, and A. Y. Sun, “Resveratrol Protects Against Neurotoxicity Induced by Kainic Acid*,” 2004. [Google Scholar]
- E. T. Marashly and S. A. Bohlega, “Riboflavin has neuroprotective potential: Focus on Parkinson’s disease and migraine,” Frontiers in Neurology, vol. 8, no. JUL. Frontiers Media S.A., 2017, doi: 10.3389/fneur.2017.00333. [CrossRef] [Google Scholar]
- S. J. Wang, W. M. Wu, F. Lo Yang, G. S. Wang Hsu, and C. Y. Huang, “Vitamin B2 inhibits glutamate release from rat cerebrocortical nerve terminals,” Neuroreport, vol. 19, no. 13, pp. 1335–1338, 2008, doi: 10.1097/WNR.0b013e32830b8afa. [CrossRef] [PubMed] [Google Scholar]
- Y. Lin, A. Desbois, S. Jiang, and S. T. Hou, “Group B vitamins protect murine cerebellar granule cells from glutamate/NMDA toxicity,” 2004. [Google Scholar]
- G. F. Crotty, A. Ascherio, and M. A. Schwarzschild, “Targeting urate to reduce oxidative stress in Parkinson disease,” Exp. Neurol., vol. 298, pp. 210–224, 2017. [CrossRef] [Google Scholar]
- M. Cortese, T. Riise, A. Engeland, A. Ascherio, and K. Bjørnevik, “Urate and the risk of Parkinson’s disease in men and women,” Parkinsonism Relat. Disord., vol. 52, pp. 76–82, 2018. [CrossRef] [Google Scholar]
- M. R. Sarukhani, H. Haghdoost-Yazdi, and G. Khandan-Chelarci, “Changes in the serum urate level can predict the development of Parkinsonism in the 6-hydroxydopamine animal model,” Neurochem. Res., vol. 43, no. 5, pp. 1086–1095, 2018. [CrossRef] [PubMed] [Google Scholar]
- S. Hernando et al., “Beneficial effects of n-3 polyunsaturated fatty acids administration in a partial lesion model of Parkinson’s disease: the role of glia and NRf2 regulation,” Neurobiol. Dis., vol. 121, pp. 252–262, 2019. [CrossRef] [Google Scholar]
- S. C. Dyall, “Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA,” Front. Aging Neurosci., vol. 7, p. 52, 2015. [CrossRef] [Google Scholar]
- B. B. Aggarwal et al., “Curcumin-Biological and Medicinal Properties,” 2006. [Google Scholar]
- N. Pandey, J. Strider, W. C. Nolan, S. X. Yan, and J. E. Galvin, “Curcumin inhibits aggregation of α- synuclein,” Acta Neuropathol., vol. 115, no. 4, pp. 479–489, 2008, doi: 10.1007/s00401-007-0332-4. [CrossRef] [PubMed] [Google Scholar]
- M. Caruana, R. Cauchi, and N. Vassallo, “Putative Role of Red Wine Polyphenols against Brain Pathology in Alzheimer’s and Parkinson’s Disease,” Frontiers in Nutrition, vol. 3. Frontiers Media S.A., 2016, doi: 10.3389/fnut.2016.00031. [CrossRef] [Google Scholar]
- F. Jin, Q. Wu, Y. F. Lu, Q. H. Gong, and J. S. Shi, “Neuroprotective effect of resveratrol on 6-OHDA- induced Parkinson’s disease in rats,” Eur. J. Pharmacol., vol. 600, no. 1–3, pp. 78–82, 2008, doi: 10.1016/j.ejphar.2008.10.005. [CrossRef] [Google Scholar]
- C. Cleren et al., “Therapeutic effects of coenzyme Q10 (CoQ10) and reduced CoQ10 in the MPTP model of Parkinsonism,” J. Neurochem., vol. 104, no. 6, pp. 1613–1621, 2008. [CrossRef] [PubMed] [Google Scholar]
- M. F. Beal, R. T. Matthews, A. Tieleman, and C. W. Shults, “Coenzyme Q10 attenuates the 1-methyl-4- phenyl-1,2,3,tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice.,” Brain Res., vol. 783, no. 1, pp. 109–114, Feb. 1998, doi: 10.1016/s0006-8993(97)01192-x. [CrossRef] [Google Scholar]
- C. W. Shults et al., “Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline.,” Arch. Neurol., vol. 59, no. 10, pp. 1541–1550, Oct. 2002, doi: 10.1001/archneur.59.10.1541. [CrossRef] [PubMed] [Google Scholar]
- T. Müller, T. Büttner, A.-F. Gholipour, and W. Kuhn, “Coenzyme Q10 supplementation provides mild symptomatic benefit in patients with Parkinson’s disease,” Neurosci. Lett., vol. 341, no. 3, pp. 201–204, 2003. [CrossRef] [Google Scholar]
- A. Storch et al., “Randomized, double-blind, placebo-controlled trial on symptomatic effects of coenzyme Q10 in Parkinson disease,” Arch. Neurol., vol. 64, no. 7, pp. 938–944, 2007. [CrossRef] [PubMed] [Google Scholar]
- W. Jang et al., “1, 25-Dyhydroxyvitamin D3 attenuates rotenone-induced neurotoxicity in SH-SY5Y cells through induction of autophagy,” Biochem. Biophys. Res. Commun., vol. 451, no. 1, pp. 142–147, 2014. [CrossRef] [Google Scholar]
- O. Suchowersky, G. Gronseth, J. Perlmutter, S. Reich, T. Zesiewicz, and W. J. Weiner, “Practice parameter: neuroprotective strategies and alternative therapies for Parkinson disease (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology,” Neurology, 2006. [Google Scholar]
- G. Grosso et al., “Effects of vitamin C on health: a review of evidence,” Front Biosci (Landmark Ed), vol. 18, no. 3, pp. 1017–1029, 2013. [CrossRef] [Google Scholar]
- M. C. Chang, S. G. Kwak, and S. Kwak, “Effect of dietary vitamins C and E on the risk of Parkinson’s disease: A meta-analysis,” Clin. Nutr., vol. 40, no. 6, pp. 3922–3930, 2021. [CrossRef] [Google Scholar]
- F. Zhang, S. Xing, and Z. Li, “Antagonistic effects of lycopene on cadmium-induced hippocampal dysfunctions in autophagy, calcium homeostatis and redox,” Oncotarget, vol. 8, no. 27, p. 44720, 2017. [CrossRef] [PubMed] [Google Scholar]
- S. H. Kim and H. Kim, “Astaxanthin modulation of signaling pathways that regulate autophagy,” Mar. Drugs, vol. 17, no. 10, p. 546, 2019. [CrossRef] [Google Scholar]
- C. Galasso et al., “On the neuroprotective role of astaxanthin: new perspectives?,” Mar. Drugs, vol. 16, no. 8, p. 247, 2018. [CrossRef] [Google Scholar]
- S. Kumar, R. Verma, N. Tyagi, G. Gangenahalli, and Y. K. Verma, “Therapeutics effect of mesenchymal stromal cells in reactive oxygen species-induced damages,” Hum. Cell, pp. 1–14, 2021. [Google Scholar]
- “A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease,” 2006. [Google Scholar]
- M. A. Zampol and M. H. Barros, “Melatonin improves survival and respiratory activity of yeast cells challenged by alpha-synuclein and menadione,” Yeast, vol. 35, no. 3, pp. 281–290, 2018. [CrossRef] [PubMed] [Google Scholar]
- R. Paul, B. C. Phukan, A. J. Thenmozhi, T. Manivasagam, P. Bhattacharya, and A. Borah, “Melatonin protects against behavioral deficits, dopamine loss and oxidative stress in homocysteine model of Parkinson’s disease,” Life Sci., vol. 192, pp. 238–245, 2018. [CrossRef] [Google Scholar]
- T. B. Bassani et al., “Neuroprotective and antidepressant-like effects of melatonin in a rotenone-induced Parkinson’s disease model in rats,” Brain Res., vol. 1593, pp. 95–105, 2014. [CrossRef] [Google Scholar]
- O. Ozsoy et al., “Melatonin is protective against 6-hydroxydopamine-induced oxidative stress in a hemiparkinsonian rat model,” Free Radic. Res., vol. 49, no. 8, pp. 1004–1014, 2015. [CrossRef] [PubMed] [Google Scholar]
- G. G. Ortiz et al., “Effect of melatonin administration on cyclooxygenase-2 activity, serum levels of nitric oxide metabolites, lipoperoxides and glutathione peroxidase activity in patients with Parkinson’s disease,” Gac. Med. Mex., vol. 153, no. Supl. 2, pp. S72--S81, 2017. [Google Scholar]
- A. Naskar, V. Prabhakar, R. Singh, D. Dutta, and K. P. Mohanakumar, “Melatonin enhances L-DOPA therapeutic effects, helps to reduce its dose, and protects dopaminergic neurons in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced Parkinsonism in mice,” J. Pineal Res., vol. 58, no. 3, pp. 262–274, 2015. [CrossRef] [PubMed] [Google Scholar]
- H. Belaid, J. Adrien, C. Karachi, E. C. Hirsch, and C. François, “Effect of melatonin on sleep disorders in a monkey model of Parkinson’s disease,” Sleep Med., vol. 16, no. 10, pp. 1245–1251, 2015. [CrossRef] [Google Scholar]
- X. Sun et al., “Melatonin attenuates hLRRK2-induced sleep disturbances and synaptic dysfunction in a Drosophila model of Parkinson’s disease,” Mol. Med. Rep., vol. 13, no. 5, pp. 3936–3944, 2016. [CrossRef] [PubMed] [Google Scholar]
- J. H. Ahn et al., “Prolonged-release melatonin in Parkinson’s disease patients with a poor sleep quality: A randomized trial,” Parkinsonism Relat. Disord., vol. 75, pp. 50–54, 2020. [CrossRef] [Google Scholar]
- M. Gilat et al., “Melatonin for rapid eye movement sleep behavior disorder in Parkinson’s disease: a randomised controlled trial,” Mov. Disord., vol. 35, no. 2, pp. 344–349, 2020. [CrossRef] [PubMed] [Google Scholar]
- F. Morroni et al., “Neuroprotective effect of sulforaphane in 6-hydroxydopamine-lesioned mouse model of Parkinson’s disease,” Neurotoxicology, vol. 36, pp. 63–71, 2013, doi: 10.1016/j.neuro.2013.03.004. [CrossRef] [PubMed] [Google Scholar]
- G. Park et al., “6-shogaol, an active compound of ginger, protects dopaminergic neurons in Parkinson’s disease models via anti-neuroinflammation,” Acta Pharmacol. Sin., vol. 34, no. 9, pp. 1131–1139, 2013, doi: 10.1038/aps.2013.57. [CrossRef] [PubMed] [Google Scholar]
- C. Avagliano et al., “Palmitoylethanolamide protects mice against 6-OHDA-induced neurotoxicity and endoplasmic reticulum stress: In vivo and in vitro evidence,” Pharmacol. Res., vol. 113, pp. 276–289, 2016. [CrossRef] [Google Scholar]
- S.-Y. Lu et al., “Autophagy in gastric mucosa: The dual role and potential therapeutic target,” Biomed Res. Int., vol. 2021, 2021. [Google Scholar]
- Y. Dong et al., “Ascorbic acid ameliorates seizures and brain damage in rats through inhibiting autophagy,” Brain Res., vol. 1535, pp. 115–123, 2013. [CrossRef] [Google Scholar]
- L. L. Xiu et al., “Low and high homocysteine are associated with mortality independent of B group vitamins but interactive with cognitive status in a free-living elderly cohort,” Nutr. Res., vol. 32, no. 12, pp. 928–939, 2012, doi: 10.1016/j.nutres.2012.09.005. [CrossRef] [Google Scholar]
- H. Iwaki et al., “One year safety and efficacy of inosine to increase the serum urate level for patients with Parkinson’s disease in Japan,” J. Neurol. Sci., vol. 383, pp. 75–78, 2017. [CrossRef] [Google Scholar]
- Z. Liu, Y. Yu, X. Li, C. A. Ross, and W. W. Smith, “Curcumin protects against A53T alpha-synuclein-induced toxicity in a PC12 inducible cell model for Parkinsonism,” Pharmacol. Res., vol. 63, no. 5, pp. 439–444, 2011, doi: 10.1016/j.phrs.2011.01.004. [CrossRef] [Google Scholar]
- M. S. Wang, S. Boddapati, S. Emadi, and M. R. Sierks, “Curcumin reduces α-synuclein induced cytotoxicity in Parkinson’s disease cell model,” BMC Neurosci., vol. 11, 2010, doi: 10.1186/1471-2202-11-57. [Google Scholar]
- Y. Jiao et al., “Iron chelation in the biological activity of curcumin,” Free Radic. Biol. Med., vol. 40, no. 7, pp. 1152–1160, 2006, doi: 10.1016/j.freeradbiomed.2005.11.003. [CrossRef] [Google Scholar]
- A. Nakashima et al., “Feeding-produced subchronic high plasma levels of uric acid improve behavioral dysfunction in 6-hydroxydopamine-induced mouse model of Parkinson’s disease,” Behav. Pharmacol., vol. 30, no. 1, pp. 89–94, 2019. [CrossRef] [PubMed] [Google Scholar]
- Rosha, P., Mohapatra, S.K., Mahla, S.K., Cho, H., Chauhan, B.S. and Dhir, A., 2019. Effect of compression ratio on combustion, performance, and emission characteristics of compression ignition engine fueled with palm (B20) biodiesel blend. Energy, 178, pp.676-684. [CrossRef] [Google Scholar]
- Naqshbandi, M.M., Tabche, I. and Choudhary, N., 2019. Managing open innovation: The roles of empowering leadership and employee involvement climate. Management Decision, 57(3), pp.703-723. [CrossRef] [Google Scholar]
- Prashar, G., Hitesh Vasudev & Thakur, L. A comprehensive Review on the Hot Corrosion and Erosion Performance of thermal Barrier Coatings. Protection of Metals and Physical Chemistry of Surfaces 59, 461–492 (2023). https://doi.org/10.1134/S2070205122060132 (SCI, IF: 1.1). [CrossRef] [Google Scholar]
- G. Prashar and H. Vasudev, “A comprehensive review on combating the elevated temperature surface degradation by MCrAlX coatings” Surface review and letters; https://doi.org/10.1142/S0218625X23300095 [Google Scholar]
- Sanjay W., Digvijay G., Walmik S., and Hitesh Vasudev, Plasticity Index a measure of dry sliding wear for Ni-based coating, Surface review and letters; https://doi.org/10.1142/S0218625X23400103 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.