Open Access
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
Article Number 01053
Number of page(s) 13
Published online 12 January 2024
  • Aboura, S., & Chevallier, J. (2015). Volatility returns with vengeance: Financial markets vs. commodities. Research in International Business and Finance, 33, 334–354. [CrossRef] [Google Scholar]
  • Alimi, O. L., & Oyedeji, O. F. (2015). Stabilization of model crude oil emulsion using different concentrations of asphaltene. ChemSearch Journal, 6(2), 25-31. [Google Scholar]
  • Apergis, N., & Miller, S. M. (2009). Do structural oil-market shocks affect stock prices?. Energy Economics, 31(4), 569–575. [CrossRef] [Google Scholar]
  • Baldi, L., Peri, M.,& Vandone, D. (2016). Stock markets’ bubbles burst and volatility spillovers in agricultural commodity markets. Research in International Business and Finance, 38, 277–285. [CrossRef] [Google Scholar]
  • Black, A. J., Klinkowska, O, McMillan, D.G., & McMillan, J. F. (2014). Forecasting stock returns: do commodity prices help?. Journal of Forecasting, 33(8), 627–639. [CrossRef] [Google Scholar]
  • Bouri, E., Jain, A., Biswal, P. C., & Roubaud, D. (2017). Cointegration and nonlinear causality amongst gold, oil, and the Indian stock market: Evidence from implied volatility indices. Resources Policy, 52, 201–206. [CrossRef] [Google Scholar]
  • Broadstock, D. C., Cao, H., & Zhang, D. (2012). Oil shocks and their impact on energy related stocks in China. Energy Economics, 34(6), 1888–1895. [CrossRef] [Google Scholar]
  • Chebbi, T., & Derbali, A., (2015). The dynamic correlation between energy commodities and Islamic stock market: analysis and forecasting. International Journal of Trade and Global Markets, 8(2), 112–126. [CrossRef] [Google Scholar]
  • Choi, K., & Hammoudeh, S. (2010). Volatility behavior of oil, industrial commodity and stock markets in a regime- switching environment. Energy policy, 38(8), 4388-4399. [CrossRef] [Google Scholar]
  • Ciner, C. (2001). Energy shocks and financial markets: Nonlinear linkages. Studies in Nonlinear Dynamics & Econometrics, 5(3), 203–212. [CrossRef] [Google Scholar]
  • Conover, C. M., Jensen, G.R., Johnson, R.R., & Mercer, J.M. (2010). Is now the time to add commodities to your portfolio?. The Journal of Investing, 19(3), 10–19. [CrossRef] [Google Scholar]
  • Creti, A., Joets, M., & Mignon, V. (2013). On the links between stock and commodity markets’ volatility. Energy Economics, 37, 16–28. [CrossRef] [Google Scholar]
  • De Boyrie, M. E., & Pavlova, I. (2016). Linkages between Equity and Commodity Markets: Are Emerging Markets Different?. Retrieved from [Google Scholar]
  • Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American statistical association, 74, 427–431. [Google Scholar]
  • Dutta, A. (2017). Oil and energy sector stock markets: An analysis of implied volatility indexes. Journal of Multinational Financial Management, 44, 61–68. [Google Scholar]
  • Elder, J., Miao, H., & Ramchander, S. (2012). Jumps in Oil Prices: The Role of Economic News. Energy Journal, 34, 2013. [Google Scholar]
  • Etiope, G. (2015). Natural gas seepage. The Earth’s hydrocarbon degassing, 199. [Google Scholar]
  • Ghosh, S. (2011). Examining crude oil price–Exchange rate nexus for India during the period of extreme oil price volatility. Applied Energy, 88(5), 1886–1889. [CrossRef] [Google Scholar]
  • Ghosh, S., & Kanjilal, K. (2016). Co-movement of international crude oil price and Indian stock market: Evidences from nonlinear cointegration tests. Energy Economics, 53, 111–117. [CrossRef] [Google Scholar]
  • Girardi, D. (2015). Financialization of food. Modelling the time-varying relation between agricultural prices and stock market dynamics. International Review of Applied Economics. 29(4), 482–505. [CrossRef] [Google Scholar]
  • Gormus, N. A. (2012). Causality and volatility spillover effects on sub sector energy portfolio. (Published Doctoral Dissertation), The University of Texas, Arlington, Texas. [Google Scholar]
  • Hammoudeh, S., & Aleisa, E. (2004). Dynamic relationships among GCC stock markets and NYMEX oil futures. Contemporary Economic Policy, 22(2), 250–269. [CrossRef] [Google Scholar]
  • Harri, A., Nalley, L., & Hudson, D. (2009). The relationship between oil, exchange rates, and commodity prices. Journal of agricultural and applied economics, 41(2), 501–510. [CrossRef] [Google Scholar]
  • Huang, R. D., Masulis, R. W., & Stoll, H. R. (1996). Energy shocks and financial markets. Journal of Futures Markets: Futures, Options, and Other Derivative Products, 16(1), 1–27. [Google Scholar]
  • Ivanov, V., & Kilian, L. (2005). A practitioner’s guide to lag order selection for VAR impulse response analysis. Studies in Nonlinear Dynamics & Econometrics, 9(1). [CrossRef] [Google Scholar]
  • Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control, 12(2–3), 231–254. [CrossRef] [Google Scholar]
  • Johnson, R., & Soenen, L. (2009). Commodity prices and stock market behavior in South American countries in the short run. Emerging Markets Finance and Trade, 45(4), 69–82. [CrossRef] [Google Scholar]
  • Kaur, G., & Dhiman, B. (2019). Agricultural Commodities and FMCG Stock Prices in India: Evidence from the ARDL Bound Test and the Toda and Yamamoto Causality Analysis. Global Business Review, 0972150919830803. [Google Scholar]
  • Kisswani, K. M., & Elian, M. I. (2003). Do Oil Prices Affect Kuwait Sectoral Stock Prices? Non-Linear Cointegration Evidence. Economic Research Forum Working Papers 1141. Retrieved from [Google Scholar]
  • Kwiatkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root?. Journal of econometrics, 54(1-3), 159-178. [CrossRef] [Google Scholar]
  • Li, S., & Wang, Q. (2019). India’s dependence on foreign oil will exceed 90% around 2025-The forecasting results based on two hybridized NMGM-ARIMA and NMGM-BP models. Journal of Cleaner Production, 232, 137–153. [CrossRef] [Google Scholar]
  • Liu, L., Zhu, T., Pan, Y., & Wang, H. (2017). Multiple energy complementation based on distributed energy systems–Case study of Chongming county, China. Applied energy, 192, 329-336. [CrossRef] [Google Scholar]
  • Maghyereh, A., & Al-Kandari, A. (2007). Oil prices and stock markets in GCC countries: New evidence from nonlinear cointegration analysis. Managerial Finance, 33(7), 449–460. [CrossRef] [Google Scholar]
  • Narsimhulu, S., Satish, D., & Satyanarayana, S. V. (2016). Financialisation Impacting Diversification? Evidence from Indian Equity & Commodity Markets. Theoretical Economics Letters, 6(5), 837-853. [CrossRef] [Google Scholar]
  • Nkoro, E., & Uko, A. K. (2016). Autoregressive Distributed Lag (ARDL) cointegration technique: application and interpretation. Journal of Statistical and Econometric methods, 5(4), 63-91. [Google Scholar]
  • Nwala, K. (2007). An empirical investigation into the relation of oil to stock market prices. North American Journal of Finance and Banking Research, 1(1), 1-13. [Google Scholar]
  • Oztek, M. F., & Ocal, N. (2017). Financial crises and the nature of correlation between commodity and stock markets. International Review of Economics & Finance, 48, 56–68. [CrossRef] [Google Scholar]
  • Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics, 16(3), 289–326. [CrossRef] [Google Scholar]
  • Ping, L., Ziyi, Z., Tianna, Y., & Qingchao, Z. (2018). The relationship among China’s fuel oil spot, futures and stock markets. Finance Research Letters, 24, 151–162. [CrossRef] [Google Scholar]
  • Reddy, Y. V., & Sebastin, A. (2009). Are commodity and stock markets independent of each other? A case study in India. The Journal of Alternative Investments, 11(3), 85. [Google Scholar]
  • Sadorsky, P. (1999). Oil price shocks and stock market activity. Energy economics, 21(5), 449–469. [CrossRef] [Google Scholar]
  • Siami-Namini, S. (2017). Granger causality between exchange rate and stock price: A Toda Yamamoto approach. International Journal of Economics and Financial Issues, 7(4), 603-607. [Google Scholar]
  • Souček, M. (2013). Crude oil, equity and gold futures open interest co-movements. Energy Economics, 40(C), 306–315. [CrossRef] [Google Scholar]
  • Tang, K., & Xiong, W. (2012). Index investment and the financialization of commodities. Financial Analysts Journal, 68(5), 54–74. [CrossRef] [Google Scholar]
  • Toda, H. Y., & Yamamoto, T. (1995). Statistical inference in vector autoregressions with possibly integrated processes. Journal of Econometrics, 66(1–2), 225–250. [CrossRef] [Google Scholar]
  • Tursoy, T., & Faisal, F. (2017). The impact of gold and crude oil prices on stock market in Turkey: Empirical evidences from ARDL bounds test and combined cointegration. Resources Policy, 55, 49–54. [Google Scholar]
  • Urrutia, J., & Malliaris, A. G. (2005). Equity and Oil Markets under External Shocks. World Scientific Book Chapters, Economic Uncertainty, Instabilities And Asset Bubbles Selected Essays, chapter 19, pages 309- 322 World Scientific Publishing Co. Pte. Ltd. [Google Scholar]
  • Vivian, A., & Wohar, M. E. (2012). Commodity volatility breaks. Journal of International Financial Markets, Institutions and Money, 22(2), 395-422. [CrossRef] [Google Scholar]
  • Yadav, M. P., Sharif, T., Ashok, S., Dhingra, D., & Abedin, M. Z. (2023). Investigating volatility spillover of energy commodities in the context of the Chinese and European stock markets. Research in International Business and Finance, 65, 101948. [CrossRef] [Google Scholar]
  • Yamori, N. (2010). Co-movement between Commodity Market and Equity Market: Does Commodity Market Change?. MPRA Paper 23096, University Library of Munich, Germany. Retrieved from [Google Scholar]
  • Zhu, H.-M., Li, R., and Li, S. (2014). Modelling dynamic dependence between crude oil prices and Asia-Pacific stock market returns. International Review of Economics & Finance, 29, 208–223. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.