Open Access
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
Article Number 01078
Number of page(s) 9
Published online 12 January 2024
  • R. Guo and Z. Zhong, “A customer-centric IoT-based novel closed-loop supply chain model for WEEE management,” Advanced Engineering Informatics, vol. 55, Jan. 2023, doi: 10.1016/j.aei.2023.101899. [Google Scholar]
  • “Evaluating Urban Sustainability with the IoT Sustainability Assessment Test - Search |” Accessed: Oct. 26, 2023. [Online]. Available: [Google Scholar]
  • Y. Shu, N. Deng, Y. Wu, S. Bao, and A. Bie, “Urban governance and sustainable development: The effect of smart city on carbon emission in China,” Technol Forecast Soc Change, vol. 193, Aug. 2023, doi: 10.1016/j.techfore.2023.122643. [PubMed] [Google Scholar]
  • E. S. Bibri, J. Krogstie, A. Kaboli, and A. Alahi, “Smarter eco-cities and their leading-edge artificial intelligence of things solutions for environmental sustainability: A comprehensive systematic review,” Environmental Science and Ecotechnology, p. 100330, Oct. 2023, doi: 10.1016/J.ESE.2023.100330. [Google Scholar]
  • S. Singh, P. K. Sharma, B. Yoon, M. Shojafar, G. H. Cho, and I. H. Ra, “Convergence of blockchain and artificial intelligence in IoT network for the sustainable smart city,” Sustain Cities Soc, vol. 63, Dec. 2020, doi: 10.1016/j.scs.2020.102364. [CrossRef] [Google Scholar]
  • M. Venkadavarahan and S. Marisamynathan, “Development of freight trip generation model using observed and unobserved information of supply chain characteristics for a sustainable urban transformation,” J Clean Prod, vol. 421, Oct. 2023, doi: 10.1016/j.jclepro.2023.138500. [CrossRef] [Google Scholar]
  • C. Kuster, J. L. Hippolyte, and Y. Rezgui, “The UDSA ontology: An ontology to support real time urban sustainability assessment,” Advances in Engineering Software, vol. 140, Feb. 2020, doi: 10.1016/j.advengsoft.2019.102731. [CrossRef] [Google Scholar]
  • A. Pradhan and B. Unhelkar, “The role of IoT in smart cities: Challenges of air quality mass sensor technology for sustainable solutions,” Security and Privacy Issues in IoT Devices and Sensor Networks, pp. 285–307, Jan. 2020, doi: 10.1016/B978-0-12-821255-4.00013-4. [Google Scholar]
  • Y. J. Kim, S. Jang, and K. B. Kim, “Impact of urban microclimate on walking volume by street type and heat-vulnerable age groups: Seoul’s IoT sensor big data,” Urban Clim, vol. 51, Sep. 2023, doi: 10.1016/j.uclim.2023.101658. [Google Scholar]
  • T. Kumar and A. Doss, “AIRO: Development of an Intelligent IoT-based Air Quality Monitoring Solution for Urban Areas,” Procedia Comput Sci, vol. 218, pp. 262–273, 2022, doi: 10.1016/j.procs.2023.01.008. [CrossRef] [Google Scholar]
  • S. Kodihal and M. P. Akhtar, “A sustainable approach to study and prediction of urban footprints of Jaipur and its growth direction using satellite based-data analysis,” Mater Today Proc, Jun. 2023, doi: 10.1016/j.matpr.2023.05.693. [Google Scholar]
  • W. Pan and Z. Zhang, “Benchmarking the sustainability of concrete and steel modular construction for buildings in urban development,” Sustain Cities Soc, vol. 90, Mar. 2023, doi: 10.1016/j.scs.2023.104400. [PubMed] [Google Scholar]
  • H. Shan, P. Poredoš, H. Zou, H. Lv, and R. Wang, “Perspectives for urban microenvironment sustainability enabled by decentralized water-energy-food harvesting,” Energy, vol. 282, Nov. 2023, doi: 10.1016/ [CrossRef] [Google Scholar]
  • S. E. Bibri, “The IoT for smart sustainable cities of the future: An analytical framework for sensor-based big data applications for environmental sustainability,” Sustain Cities Soc, vol. 38, pp. 230–253, Apr. 2018, doi: 10.1016/j.scs.2017.12.034. [CrossRef] [Google Scholar]
  • A. Salehi-Amiri, N. Akbapour, M. Hajiaghaei-Keshteli, Y. Gajpal, and A. Jabbarzadeh, “Designing an effective two-stage, sustainable, and IoT based waste management system,” Renewable and Sustainable Energy Reviews, vol. 157, Apr. 2022, doi: 10.1016/j.rser.2021.112031. [CrossRef] [Google Scholar]
  • T. H. Son, Z. Weedon, T. Yigitcanlar, T. Sanchez, J. M. Corchado, and R. Mehmood, “Algorithmic urban planning for smart and sustainable development: Systematic review of the literature,” Sustain Cities Soc, vol. 94, Jul. 2023, doi: 10.1016/j.scs.2023.104562. [PubMed] [Google Scholar]
  • W. Zhao et al., “Design of low-energy buildings in densely populated urban areas based on IoT,” Energy Reports, vol. 8, pp. 4822–4833, Nov. 2022, doi: 10.1016/j.egyr.2022.03.139. [CrossRef] [Google Scholar]
  • M. Lu, G. Fu, N. B. Osman, and U. Konbr, “Green energy harvesting strategies on edge-based urban computing in sustainable internet of things,” Sustain Cities Soc, vol. 75, Dec. 2021, doi: 10.1016/j.scs.2021.103349. [Google Scholar]
  • O. P. Agboola, F. M. Bashir, Y. A. Dodo, M. A. S. Mohamed, and I. S. R. Alsadun, “The influence of information and communication technology (ICT) on stakeholders’ involvement and smart urban sustainability,” Environmental Advances, vol. 13, Oct. 2023, doi: 10.1016/j.envadv.2023.100431. [CrossRef] [Google Scholar]
  • V. R. Pathmudi, N. Khatri, S. Kumar, A. S. H. Abdul-Qawy, and A. K. Vyas, “A systematic review of IoT technologies and their constituents for smart and sustainable agriculture applications,” Sci Afr, vol. 19, Mar. 2023, doi: 10.1016/j.sciaf.2023.e01577. [Google Scholar]
  • P. Chithaluru et al., “An enhanced opportunistic rank-based parent node selection for sustainable & smart IoT networks,” Sustainable Energy Technologies and Assessments, vol. 56, Mar. 2023, doi: 10.1016/j.seta.2023.103079. [CrossRef] [Google Scholar]
  • O. P. Agboola and M. Tunay, “Urban resilience in the digital age: The influence of Information- Communication Technology for sustainability,” J Clean Prod, vol. 428, p. 139304, Nov. 2023, doi: 10.1016/J.JCLEPRO.2023.139304. [CrossRef] [Google Scholar]
  • F. Beştepe and S. Ö. Yildirim, “Acceptance of IoT-based and sustainability-oriented smart city services: A mixed methods study,” Sustain Cities Soc, vol. 80, May 2022, doi: 10.1016/j.scs.2022.103794. [Google Scholar]
  • N. Alkan and C. Kahraman, “CODAS Extension Using Novel Decomposed Pythagorean Fuzzy Sets: Strategy Selection for IOT Based Sustainable Supply Chain System,” Expert Syst Appl, p. 121534, Mar. 2023, doi: 10.1016/j.eswa.2023.121534. [Google Scholar]
  • R. Krishankumar and F. Ecer, “Selection of IoT service provider for sustainable transport using q-rung orthopair fuzzy CRADIS and unknown weights,” Appl Soft Comput, vol. 132, Jan. 2023, doi: 10.1016/j.asoc.2022.109870. [CrossRef] [Google Scholar]
  • S. Ding, H. Ward, S. Cucurachi, and A. Tukker, “Revealing the hidden potentials of Internet of Things (IoT) - An integrated approach using agent-based modelling and system dynamics to assess sustainable supply chain performance,” J Clean Prod, vol. 421, Oct. 2023, doi: 10.1016/j.jclepro.2023.138558. [CrossRef] [Google Scholar]
  • V. S. Rana et al., “Correction: Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector,” International Journal on Interactive Design and Manufacturing (IJIDeM), p. 1, 2023. [Google Scholar]
  • K. Kumar et al., “From Homogeneity to Heterogeneity: Designing Functionally Graded Materials for Advanced Engineering Applications,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01198. [Google Scholar]
  • M. Z. ul Haq et al., “Waste Upcycling in Construction: Geopolymer Bricks at the Vanguard of Polymer Waste Renaissance,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01205. [Google Scholar]
  • M. Z. ul Haq et al., “Circular Economy Enabler: Enhancing High-Performance Bricks through Geopolymerization of Plastic Waste,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01202. [Google Scholar]
  • A. Kumar, N. Mathur, V. S. Rana, H. Sood, and M. Nandal, “Sustainable effect of polycarboxylate ether based admixture: A meticulous experiment to hardened concrete,” Mater Today Proc, 2022. [Google Scholar]
  • Md. Z. ul Haq, H. Sood, and R. Kumar, “Effect of using plastic waste on mechanical properties of fly ash based geopolymer concrete,” Mater Today Proc, 2022. [Google Scholar]
  • Dihom, H.R., Al-Shaibani, M.M., Mohamed, R.M.S.R., Al-Gheethi, A.A., Sharma, A. and Khamidun, M.H.B., 2022. Photocatalytic degradation of disperse azo dyes in textile wastewater using green zinc oxide nanoparticles synthesized in plant extract: A critical review. Journal of Water Process Engineering, 47, p.102705. [CrossRef] [Google Scholar]
  • Nguyen, H.D., Pramanik, A., Basak, A.K., Dong, Y., Prakash, C., Debnath, S., Shankar, S., Jawahir, I.S., Dixit, S. and Buddhi, D., 2022. A critical review on additive manufacturing of Ti-6Al-4V alloy: Microstructure and mechanical properties. Journal of Materials Research and Technology, 18, pp.4641-4661. [CrossRef] [Google Scholar]
  • Singh, P., Singh, A. and Quraishi, M.A., 2016. Thiopyrimidine derivatives as new and effective corrosion inhibitors for mild steel in hydrochloric acid: Electrochemical and quantum chemical studies. Journal of the Taiwan Institute of Chemical Engineers, 60, pp.588-601. [CrossRef] [Google Scholar]
  • Uddin, M.S., Tewari, D., Al Mamun, A., Kabir, M.T., Niaz, K., Wahed, M.I.I., Barreto, G.E. and Ashraf, G.M., 2020. Circadian and sleep dysfunction in Alzheimer’s disease. Ageing Research Reviews, 60, p.101046. [CrossRef] [PubMed] [Google Scholar]
  • Nagaraju, M. and Chawla, P., 2020. Systematic review of deep learning techniques in plant disease detection. International journal of system assurance engineering and management, 11, pp.547-560. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.