Open Access
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
Article Number 01094
Number of page(s) 8
Published online 12 January 2024
  • R. Wagner, M. Matuschek, P. Knaack, M. Zwick, and M. Geiß, “IndustrialEdgeML - End-to-end edge-based computer vision systemfor Industry 5.0,” Procedia Comput Sci, vol. 217, pp. 594–603, 2022, doi: 10.1016/j.procs.2022.12.255. [Google Scholar]
  • J. Leng et al., “Industry 5.0: Prospect and retrospect,” J Manuf Syst, vol. 65, pp. 279–295, Oct. 2022, doi: 10.1016/j.jmsy.2022.09.017. [CrossRef] [Google Scholar]
  • M. Golovianko, V. Terziyan, V. Branytskyi, and D. Malyk, “Industry 4.0 vs. Industry 5.0: Co-existence, Transition, or a Hybrid,” Procedia Comput Sci, vol. 217, pp. 102–113, 2022, doi: 10.1016/j.procs.2022.12.206. [Google Scholar]
  • S. Javed, A. Tripathy, J. van Deventer, H. Mokayed, C. Paniagua, and J. Delsing, “An approach towards demand response optimization at the edge in smart energy systems using local clouds,” Smart Energy, p. 100123, Oct. 2023, doi: 10.1016/J.SEGY.2023.100123. [Google Scholar]
  • T. H. Rashidi, A. Najmi, A. Haider, C. Wang, and F. Hosseinzadeh, “What we know and do not know about connected and autonomous vehicles,” Transportmetrica A: Transport Science, vol. 16, no. 3, pp. 987–1029, Jan. 2020, doi: 10.1080/23249935.2020.1720860. [CrossRef] [Google Scholar]
  • N. Meyendorf, N. Ida, R. Singh, and J. Vrana, “NDE 4.0: Progress, promise, and its role to industry 4.0,” NDT and E International, vol. 140, Dec. 2023, doi: 10.1016/j.ndteint.2023.102957. [CrossRef] [Google Scholar]
  • N. Adnan, S. Md Nordin, M. A. bin Bahruddin, and M. Ali, “How trust can drive forward the user acceptance to the technology? In-vehicle technology for autonomous vehicle,” Transp Res Part A Policy Pract, vol. 118, pp. 819–836, Dec. 2018, doi: 10.1016/j.tra.2018.10.019. [CrossRef] [Google Scholar]
  • M. Kaniappan Chinnathai and B. Alkan, “A digital life-cycle management framework for sustainable smart manufacturing in energy intensive industries,” J Clean Prod, vol. 419, Sep. 2023, doi: 10.1016/j.jclepro.2023.138259. [CrossRef] [Google Scholar]
  • N. J. Rowan et al., “Digital transformation of peatland eco-innovations (‘Paludiculture’): Enabling a paradigm shift towards the real-time sustainable production of ‘green-friendly’ products and services,” Science of the Total Environment, vol. 838, Sep. 2022, doi: 10.1016/j.scitotenv.2022.156328. [CrossRef] [Google Scholar]
  • D. Trentesaux and E. Caillaud, “Ethical stakes of Industry 4.0,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 17002–17007, 2020, doi: 10.1016/j.ifacol.2020.12.1486. [CrossRef] [Google Scholar]
  • X. Wang, M. Fu, H. Ma, and Y. Yang, “Lateral control of autonomous vehicles based on fuzzy logic,” Control Eng Pract, vol. 34, pp. 1–17, Jan. 2015, doi: 10.1016/j.conengprac.2014.09.015. [CrossRef] [Google Scholar]
  • Y. Li, J. Tao, and F. Wotawa, “Ontology-based test generation for automated and autonomous driving functions,” Inf Softw Technol, vol. 117, Jan. 2020, doi: 10.1016/j.infsof.2019.106200. [Google Scholar]
  • Y. Zhou et al., “Between simplicity and complexity: The knapping flexibility on cobbles at the early Neolithic site of Zengpiyan Cave (12–7 ka), Guangxi Zhuang Autonomous Region, southern China,” Anthropologie (France), vol. 126, no. 5, Nov. 2022, doi: 10.1016/j.anthro.2022.103098. [Google Scholar]
  • M. Schmitt, “Securing the Digital World: Protecting smart infrastructures and digital industries with Artificial Intelligence (AI)-enabled malware and intrusion detection,” J Ind Inf Integr, p. 100520, Dec. 2023, doi: 10.1016/j.jii.2023.100520. [Google Scholar]
  • “Al and Autonomous Systems: An Experiment in Industry 5.0 Transformation - Search |” Accessed: Nov. 02, 2023. [Online]. Available: [Google Scholar]
  • F. H. Juwono, W. K. Wong, S. Verma, N. Shekhawat, B. A. Lease, and C. Apriono, “Machine learning for weed– plant discrimination in agriculture 5.0: An in-depth review,” Artificial Intelligence in Agriculture, Dec. 2023, doi: 10.1016/j.aiia.2023.09.002. [Google Scholar]
  • V. Terziyan and O. Vitko, “Explainable AI for Industry 4.0: Semantic Representation of Deep Learning Models,” Procedia Comput Sci, vol. 200, pp. 216–226, 2022, doi: 10.1016/j.procs.2022.01.220. [CrossRef] [Google Scholar]
  • A. Talebian and S. Mishra, “Unfolding the state of the adoption of connected autonomous trucks by the commercial fleet owner industry,” Transp Res E Logist Transp Rev, vol. 158, Feb. 2022, doi: 10.1016/j.tre.2022.102616. [CrossRef] [Google Scholar]
  • B. Gladysz, T. anh Tran, D. Romero, T. van Erp, J. Abonyi, and T. Ruppert, “Current development on the Operator 4.0 and transition towards the Operator 5.0: A systematic literature review in light of Industry 5.0,” J Manuf Syst, vol. 70, pp. 160–185, Oct. 2023, doi: 10.1016/j.jmsy.2023.07.008. [CrossRef] [Google Scholar]
  • D. Gackstetter et al., “Autonomous field management – An enabler of sustainable future in agriculture,” Agric Syst, vol. 206, Mar. 2023, doi: 10.1016/j.agsy.2023.103607. [CrossRef] [Google Scholar]
  • D. Mourtzis, J. Angelopoulos, and N. Panopoulos, “Industry 4.0 and smart manufacturing,” Reference Module in Materials Science and Materials Engineering, 2022, doi: 10.1016/B978-0-323-96020-5.00010-8. [Google Scholar]
  • A. Shahedi, I. Dadashpour, and M. Rezaei, “Barriers to the sustainable adoption of autonomous vehicles in developing countries: A multi-criteria decision-making approach,” Heliyon, vol. 9, no. 5, May 2023, doi: 10.1016/j.heliyon.2023.e15975. [CrossRef] [PubMed] [Google Scholar]
  • C. Song, Z. Chen, K. Wang, H. Luo, and J. C. P. Cheng, “BIM-supported scan and flight planning for fully autonomous LiDAR-carrying UAVs,” Autom Constr, vol. 142, Oct. 2022, doi: 10.1016/j.autcon.2022.104533. [CrossRef] [Google Scholar]
  • M. R. Pervez, M. H. Ahamed, M. A. Ahmed, S. M. Takrim, and P. Dario, “Autonomous grinding algorithms with future prospect towards SMART manufacturing: A comparative survey,” J Manuf Syst, vol. 62, pp. 164–185, Jan. 2022, doi: 10.1016/j.jmsy.2021.11.009. [CrossRef] [Google Scholar]
  • P. Brauner and M. Ziefle, “Beyond playful learning – Serious games for the human-centric digital transformation of production and a design process model,” Technol Soc, vol. 71, Nov. 2022, doi: 10.1016/j.techsoc.2022.102140. [CrossRef] [Google Scholar]
  • Md. Z. ul Haq, H. Sood, and R. Kumar, “Effect of using plastic waste on mechanical properties of fly ash based geopolymer concrete,” Mater Today Proc, 2022. [Google Scholar]
  • A. Kumar, N. Mathur, V. S. Rana, H. Sood, and M. Nandal, “Sustainable effect of polycarboxylate ether based admixture: A meticulous experiment to hardened concrete,” Mater Today Proc, 2022. [Google Scholar]
  • H. Sood, R. Kumar, P. C. Jena, and S. K. Joshi, “Eco-friendly approach to construction: Incorporating waste plastic in geopolymer concrete,” Mater Today Proc, 2023. [Google Scholar]
  • M. Z. ul Haq et al., “Sustainable Infrastructure Solutions: Advancing Geopolymer Bricks via Eco- Polymerization of Plastic Waste,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01203. [Google Scholar]
  • M. Z. ul Haq et al., “Geopolymerization of Plastic Waste for Sustainable Construction: Unveiling Novel Opportunities in Building Materials,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01204. [Google Scholar]
  • P. Singh et al., “Development of performance-based models for green concrete using multiple linear regression and artificial neural network,” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01386-6. [Google Scholar]
  • A. Jaswal et al., “Synthesis and Characterization of Highly Transparent and Superhydrophobic Zinc Oxide (ZnO) Film,” Lecture Notes in Mechanical Engineering, pp. 119–127, 2023, doi: 10.1007/978-981-19-4147-4_12. [Google Scholar]
  • T. K. Miroshnikova, I. A. Kirichenko, and S. Dixit, “Analytical aspects of anti-crisis measures of public administration,” UPRAVLENIE / MANAGEMENT (Russia), vol. 10, no. 4, pp. 5–13, Jan. 2023, doi: 10.26425/2309-3633-2022-10-4-5-13. [CrossRef] [Google Scholar]
  • S. Dixit et al., “Numerical simulation of sand–water slurry flow through pipe bend using CFD,” International Journal on Interactive Design and Manufacturing, Oct. 2022, doi: 10.1007/S12008-022-01004-X. [Google Scholar]
  • R. Gera et al., “A systematic literature review of supply chain management practices and performance,” Mater Today Proc, vol. 69, pp. 624–632, Jan. 2022, doi: 10.1016/J.MATPR.2022.10.203. [CrossRef] [Google Scholar]
  • V. S. Rana et al., “Correction: Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector (International Journal on Interactive Design and Manufacturing (IJIDeM), (2023), 10.1007/s12008-023-01456-9),” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01518-Y. [Google Scholar]
  • Vinnik, D.A., Zhivulin, V.E., Sherstyuk, D.P., Starikov, A.Y., Zezyulina, P.A., Gudkova, S.A., Zherebtsov, D.A., Rozanov, K.N., Trukhanov, S.V., Astapovich, K.A. and Sombra, A.S.B., 2021. Ni substitution effect on the structure, magnetization, resistivity and permeability of zinc ferrites. Journal of Materials Chemistry C, 9(16), pp.5425-5436. [CrossRef] [Google Scholar]
  • Khamparia, A., Singh, P.K., Rani, P., Samanta, D., Khanna, A. and Bhushan, B., 2021. An internet of health things‐driven deep learning framework for detection and classification of skin cancer using transfer learning. Transactions on Emerging Telecommunications Technologies, 32(7), p.e3963. [CrossRef] [Google Scholar]
  • Prakash, C., Singh, S., Pabla, B.S. and Uddin, M.S., 2018. Synthesis, characterization, corrosion and bioactivity investigation of nano-HA coating deposited on biodegradable Mg-Zn-Mn alloy. Surface and Coatings Technology, 346, pp.9-18. [CrossRef] [Google Scholar]
  • Masud, M., Gaba, G.S., Choudhary, K., Hossain, M.S., Alhamid, M.F. and Muhammad, G., 2021. Lightweight and anonymity-preserving user authentication scheme for IoT-based healthcare. IEEE Internet of Things Journal, 9(4), pp.2649-2656. [Google Scholar]
  • Uddin, M.S., Tewari, D., Sharma, G., Kabir, M.T., Barreto, G.E., Bin-Jumah, M.N., Perveen, A., Abdel-Daim, M.M. and Ashraf, G.M., 2020. Molecular Mechanisms of ER Stress and UPR in the Pathogenesis of Alzheimer’s Disease. Molecular Neurobiology, 57, pp.2902-2919. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.