Open Access
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
Article Number 01100
Number of page(s) 8
Published online 12 January 2024
  • F. Jamil, M. Ibrahim, I. Ullah, S. Kim, H. K. Kahng, and D. H. Kim, “Optimal smart contract for autonomous greenhouse environment based on IoT blockchain network in agriculture,” Comput Electron Agric, vol. 192, Jan. 2022, doi: 10.1016/j.compag.2021.106573. [CrossRef] [Google Scholar]
  • U. K. Lilhore, S. Dalal, and S. Simaiya, “A Cognitive Security Framework for Detecting Intrusions in IoT and 5G Utilizing Deep Learning,” Comput Secur, p. 103560, Oct. 2023, doi: 10.1016/J.COSE.2023.103560. [Google Scholar]
  • S. Anand and A. Sharma, “Comprehensive analysis of services towards enhancing security in IoT-based agriculture,” Measurement: Sensors, vol. 24, Dec. 2022, doi: 10.1016/j.measen.2022.100599. [Google Scholar]
  • B. D. Deebak et al., “Seamless privacy-preservation and authentication framework for IoT-enabled smart eHealth systems,” Sustain Cities Soc, vol. 80, May 2022, doi: 10.1016/j.scs.2021.103661. [CrossRef] [Google Scholar]
  • A. K. Pandey, R. Saxena, A. Awasthi, and M. P. Sunil, “Privacy preserved data sharing using blockchain and support vector machine for industrial IOT applications,” Measurement: Sensors, vol. 29, Oct. 2023, doi: 10.1016/j.measen.2023.100891. [CrossRef] [Google Scholar]
  • P. Sharma, S. Namasudra, R. Gonzalez Crespo, J. Parra-Fuente, and M. Chandra Trivedi, “EHDHE: Enhancing security of healthcare documents in IoT-enabled digital healthcare ecosystems using blockchain,” Inf Sci (N Y), vol. 629, pp. 703–718, Jun. 2023, doi: 10.1016/j.ins.2023.01.148. [CrossRef] [Google Scholar]
  • Kumar, V. U., and V. Tiwari, “Optimized traffic engineering in Software Defined Wireless Network based IoT (SDWN-IoT): State-of-the-art, research opportunities and challenges,” Comput Sci Rev, vol. 49, Aug. 2023, doi: 10.1016/j.cosrev.2023.100572. [CrossRef] [Google Scholar]
  • S. Ghosh, A. Chatterjee, and D. Chatterjee, “Extraction of statistical features for type-2 fuzzy NILM with IoT enabled control in a smart home,” Expert Syst Appl, vol. 212, Feb. 2023, doi: 10.1016/j.eswa.2022.118750. [CrossRef] [Google Scholar]
  • S. Ben Atitallah, M. Driss, and H. Ben Ghezala, “FedMicro-IDA: A federated learning and microservices-based framework for IoT data analytics,” Internet of Things (Netherlands), vol. 23, Oct. 2023, doi: 10.1016/j.iot.2023.100845. [Google Scholar]
  • S. Ullah et al., “TNN-IDS: Transformer neural network-based intrusion detection system for MQTT- enabled IoT Networks,” Computer Networks, vol. 237, Dec. 2023, doi: 10.1016/j.comnet.2023.110072. [CrossRef] [Google Scholar]
  • S. M. Nagarajan, G. G. Deverajan, P. Chatterjee, W. Alnumay, and V. Muthukumaran, “Integration of IoT based routing process for food supply chain management in sustainable smart cities,” Sustain Cities Soc, vol. 76, Jan. 2022, doi: 10.1016/j.scs.2021.103448. [CrossRef] [Google Scholar]
  • D. Tiwari, B. S. Bhati, B. Nagpal, S. Sankhwar, and F. Al-Turjman, “An enhanced intelligent model: To protect marine IoT sensor environment using ensemble machine learning approach,” Ocean Engineering, vol. 242, Dec. 2021, doi: 10.1016/j.oceaneng.2021.110180. [CrossRef] [Google Scholar]
  • B. Varshini, H. Yogesh, S. D. Pasha, M. Suhail, V. Madhumitha, and A. Sasi, “IoT-Enabled smart doors for monitoring body temperature and face mask detection,” Global Transitions Proceedings, vol. 2, no. 2, pp. 246–254, Nov. 2021, doi: 10.1016/j.gltp.2021.08.071. [CrossRef] [Google Scholar]
  • R. Kumar and N. Agrawal, “Analysis of multi-dimensional Industrial IoT (IIoT) data in Edge–Fog– Cloud based architectural frameworks : A survey on current state and research challenges,” J Ind Inf Integr, vol. 35, Oct. 2023, doi: 10.1016/j.jii.2023.100504. [Google Scholar]
  • Y. Ge, G. Zhang, M. N. Meqdad, and S. Chen, “A systematic and comprehensive review and investigation of intelligent IoT-based healthcare systems in rural societies and governments,” Artif Intell Med, p. 102702, Nov. 2023, doi: 10.1016/J.ARTMED.2023.102702. [Google Scholar]
  • B. Kaur et al., “Internet of Things (IoT) security dataset evolution: Challenges and future directions,” Internet of Things (Netherlands), vol. 22, Jul. 2023, doi: 10.1016/j.iot.2023.100780. [Google Scholar]
  • R. R. Chowdhury and P. E. Abas, “A survey on device fingerprinting approach for resource-constraint IoT devices: Comparative study and research challenges,” Internet of Things (Netherlands), vol. 20, Nov. 2022, doi: 10.1016/j.iot.2022.100632. [Google Scholar]
  • M. Khalid, S. Hameed, A. Qadir, S. A. Shah, and D. Draheim, “Towards SDN-based smart contract solution for IoT access control,” Comput Commun, vol. 198, pp. 1–31, Jan. 2023, doi: 10.1016/j.comcom.2022.11.007. [CrossRef] [Google Scholar]
  • A. Aldhaheri, F. Alwahedi, M. A. Ferrag, and A. Battah, “Deep learning for cyber threat detection in IoT networks: A review,” Internet of Things and Cyber-Physical Systems, vol. 4, pp. 110–128, Jan. 2024, doi: 10.1016/j.iotcps.2023.09.003. [CrossRef] [Google Scholar]
  • A. Sedrati, A. Mezrioui, and A. Ouaddah, “IoT-Gov: A structured framework for internet of things governance,” Computer Networks, vol. 233, Sep. 2023, doi: 10.1016/j.comnet.2023.109902. [CrossRef] [Google Scholar]
  • S. Kumar et al., “An optimized intelligent computational security model for interconnected blockchain- IoT system & cities,” Ad Hoc Networks, p. 103299, Dec. 2023, doi: 10.1016/j.adhoc.2023.103299. [Google Scholar]
  • Y. He, J. He, and N. Wen, “The challenges of IoT-based applications in high-risk environments, health and safety industries in the Industry 4.0 era using decision-making approach,” Journal of Innovation and Knowledge, vol. 8, no. 2, Apr. 2023, doi: 10.1016/j.jik.2023.100347. [Google Scholar]
  • A. Al-Habaibeh, S. Yaseen, and B. Nweke, “A comparative study of low and high resolution infrared cameras for IoT smart city applications: A comparative study of low and high resolution infrared cameras,” Ain Shams Engineering Journal, vol. 14, no. 6, Jun. 2023, doi: 10.1016/j.asej.2022.102108. [CrossRef] [Google Scholar]
  • S. M. Rajagopal, M. Supriya, and R. Buyya, “FedSDM: Federated learning based smart decision making module for ECG data in IoT integrated Edge–Fog–Cloud computing environments,” Internet of Things (Netherlands), vol. 22, Jul. 2023, doi: 10.1016/j.iot.2023.100784. [Google Scholar]
  • C. T. Yang, H. W. Chen, E. J. Chang, E. Kristiani, K. L. P. Nguyen, and J. S. Chang, “Current advances and future challenges of AIoT applications in particulate matters (PM) monitoring and control,” J Hazard Mater, vol. 419, Oct. 2021, doi: 10.1016/j.jhazmat.2021.126442. [Google Scholar]
  • A. Kalla, C. de Alwis, P. Porambage, G. Gür, and M. Liyanage, “A survey on the use of blockchain for future 6G: Technical aspects, use cases, challenges and research directions,” J Ind Inf Integr, vol. 30, Nov. 2022, doi: 10.1016/j.jii.2022.100404. [Google Scholar]
  • Km. Preeti, A. Kumar, N. Jain, A. Kaushik, Y. K. Mishra, and S. K. Sharma, “Tailored ZnO nanostructures for efficient sensing of toxic metallic ions of drainage systems,” Materials Today Sustainability, vol. 24, p. 100515, Dec. 2023, doi: 10.1016/j.mtsust.2023.100515. [CrossRef] [Google Scholar]
  • “Edge Computing and AI: Advancements in Industry 5.0- An Experimental Assessment - Search |” Accessed: Nov. 02, 2023. [Online]. Available: [Google Scholar]
  • V. S. Rana et al., “Correction: Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector,” International Journal on Interactive Design and Manufacturing (IJIDeM), p. 1, 2023. [Google Scholar]
  • M. Z. ul Haq, H. Sood, and R. Kumar, “SEM-Assisted Mechanistic Study: pH-Driven Compressive Strength and Setting Time Behavior in Geopolymer Concrete,” 2023. [Google Scholar]
  • K. Kumar et al., “From Homogeneity to Heterogeneity: Designing Functionally Graded Materials for Advanced Engineering Applications,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01198. [Google Scholar]
  • M. Z. ul Haq et al., “Waste Upcycling in Construction: Geopolymer Bricks at the Vanguard of Polymer Waste Renaissance,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01205. [Google Scholar]
  • M. Z. ul Haq et al., “Circular Economy Enabler: Enhancing High-Performance Bricks through Geopolymerization of Plastic Waste,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01202. [Google Scholar]
  • S. Bali et al., “A framework to assess the smartphone buying behaviour using DEMATEL method in the Indian context,” Ain Shams Engineering Journal, 2023, doi: 10.1016/J.ASEJ.2023.102129. [Google Scholar]
  • V. S. Rana et al., “Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector,” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01456-9. [Google Scholar]
  • P. Singh et al., “Comparative Study of Concrete Cylinders Confined Using Natural and Artificial Fibre Reinforced Polymers,” Lecture Notes in Mechanical Engineering, pp. 79–91, 2023, doi: 10.1007/978-981-19-4147-4_8. [Google Scholar]
  • P. Singh et al., “Development of performance-based models for green concrete using multiple linear regression and artificial neural network,” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01386-6. [Google Scholar]
  • A. Jaswal et al., “Synthesis and Characterization of Highly Transparent and Superhydrophobic Zinc Oxide (ZnO) Film,” Lecture Notes in Mechanical Engineering, pp. 119–127, 2023, doi: 10.1007/978-981-19-4147-4_12. [Google Scholar]
  • T. K. Miroshnikova, I. A. Kirichenko, and S. Dixit, “Analytical aspects of anti-crisis measures of public administration,” UPRAVLENIE / MANAGEMENT (Russia), vol. 10, no. 4, pp. 5–13, Jan. 2023, doi: 10.26425/2309-3633-2022-10-4-5-13. [CrossRef] [Google Scholar]
  • S. Dixit et al., “Numerical simulation of sand–water slurry flow through pipe bend using CFD,” International Journal on Interactive Design and Manufacturing, Oct. 2022, doi: 10.1007/S12008-022-01004-X. [Google Scholar]
  • R. Gera et al., “A systematic literature review of supply chain management practices and performance,” Mater Today Proc, vol. 69, pp. 624–632, Jan. 2022, doi: 10.1016/J.MATPR.2022.10.203. [CrossRef] [Google Scholar]
  • Jena, M.K., Sharma, N.R., Petitt, M., Maulik, D. and Nayak, N.R., 2020. Pathogenesis of preeclampsia and therapeutic approaches targeting the placenta. Biomolecules, 10(6), p.953. [CrossRef] [PubMed] [Google Scholar]
  • Singh, S., Kumar, V., Kapoor, D., Kumar, S., Singh, S., Dhanjal, D.S., Datta, S., Samuel, J., Dey, P., Wang, S. and Prasad, R., 2020. Revealing on hydrogen sulfide and nitric oxide signals co‐ordination for plant growth under stress conditions. Physiologia Plantarum, 168(2), pp.301-317. [CrossRef] [PubMed] [Google Scholar]
  • Nagpal, R., Behare, P.V., Kumar, M., Mohania, D., Yadav, M., Jain, S., Menon, S., Parkash, O., Marotta, F., Minelli, E. and Henry, C.J.K., 2012. Milk, milk products, and disease free health: an updated overview. Critical reviews in food science and nutrition, 52(4), pp.321-333. [CrossRef] [PubMed] [Google Scholar]
  • Kumar, A., Sharma, S., Goyal, N., Singh, A., Cheng, X. and Singh, P., 2021. Secure and energy- efficient smart building architecture with emerging technology IoT. Computer Communications, 176, pp.207-217. [CrossRef] [Google Scholar]
  • Kehinde, B.A. and Sharma, P., 2020. Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: A review. Critical reviews in food science and nutrition, 60(2), pp.322-340. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.