Open Access
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
Article Number 01116
Number of page(s) 16
Published online 12 January 2024
  • Indian Brand Equity Foundation, Indian E-commerce Industry Analysis, available at: from (accessed 27 May 2022) (2021, May 20). [Google Scholar]
  • Coppola, Daniela. Statista, E-commerce worldwide - Statistics & Facts, available at: (accessed 28 May 2021) (2021, April 15). [Google Scholar]
  • Kosa, M., Uysal, A. The role of need satisfaction in explaining intentions to purchase and play in Pokémon Go and the moderating role of prior experience, Psychology of Popular Media, 10, 2, 187 (2021). [CrossRef] [Google Scholar]
  • Elliot, S., Fowell, S., Expectations versus Reality: A Snapshot of Customer Experience on Internet Retailing, International Journal of Information Management, 20, 5, 323–37 (2000). [CrossRef] [Google Scholar]
  • Pappas, I. O., Pateli, A. G., Giannakos, M. N., Chrissikopoulos, V., Moderating effects of online shopping experience on customer satisfaction and repurchase intentions, International Journal of Retail & Distribution Management, 42, 3, 187-204 (2014). [CrossRef] [Google Scholar]
  • Grewal, D., Michael, L., Kumar, V., Customer Experience Management in Retailing: An Organizing Framework, Journal of Retailing, 85, 1, 1–14 (2009). [CrossRef] [Google Scholar]
  • Ling, K. C., Chai, L. T., Piew, T. H., The effects of shopping orientations, online trust and prior online purchase experience toward customers’ online purchase intention, International business research, 3, 3, 63 (2010). [Google Scholar]
  • Kaur, S., Lal, A. K. Bedi, S. S., Do vendor cues influence purchase intention of online shoppers? An empirical study using S-O-R framework, Journal of Internet Commerce, 16, 343–363 (2017). [Google Scholar]
  • Silva, J., Pinho, J. C., Soares, A., Sá, E., Antecedents of online purchase intention and behaviour: Uncovering unobserved heterogeneity, Journal of Business Economics and Management, 20, 1, 131-148 (2019). [CrossRef] [Google Scholar]
  • Prabhakar, P. K. Bacterial siderophores and their potential applications: a review. Current Molecular Pharmacology, 13(4), 295-305 (2020).. [CrossRef] [PubMed] [Google Scholar]
  • Gefen, D., TAM or Just Plain Habit: A Look at Experienced Online Shoppers., Journal of End User Computing, 15, 3, 1–13 (2003). [CrossRef] [Google Scholar]
  • Bhattacharjee, K., Satisfaction of E-Banking: A Comparative Study on Degree- Holder & Non-Degree-Holder Customers, Management Research, 4, 12, 30-46 (2017). [Google Scholar]
  • Shapiro, D. L., B. H. Sheppard, Cheraskin, L. Business on a handshake, Negotiation Journal, 3 4 365–377. (1992). [CrossRef] [Google Scholar]
  • Aris, A., Mustaffa, N., Zabarudin, N. S. N. M., Concepts and constructs in online trust, In 2011 International Conference on Research and Innovation in Information Systems (1-6). IEEE (2011). [Google Scholar]
  • Lemke, F., Clark, M., Wilson, H., Customer experience quality: an exploration in business and consumer contexts using repertory grid technique, Journal of the academy of marketing science, 39, 6, 846-869 (2011). [CrossRef] [Google Scholar]
  • Jarvenpaa, S.L., Tractinsky, N., Vitale, M., Consumer trust in an Internet store, Information technology and management, 1, 1, 45-71 (2000). [CrossRef] [Google Scholar]
  • Li, R., (Doreen) Chung, T. L., Fiore, A. M., Factors affecting current users’ attitude towards e-auctions in China: An extended TAM study, Journal of Retailing and Consumer Services, 34, 19–29. (2017). [CrossRef] [Google Scholar]
  • Jadil, Y., Rana, N. P., Dwivedi, Y. K., Understanding the drivers of online trust and intention to buy on a website: An emerging market perspective, International Journal of Information Management Data Insights, 2, 1, 100065. (2022). [CrossRef] [Google Scholar]
  • Ashraf, A. R., (Tek) Thongpapanl, N., Auh, S., The application of the technology acceptance model under different cultural contexts: The case of online shopping adoption, Journal of International Marketing, 22, 68–93. (2014). [CrossRef] [Google Scholar]
  • Octavia, D., Tamerlane, A., The influence of website quality on online purchase intentions on Agoda. Com with e-trust as a mediator, Binus Business Review, 8, 1, 9-14. (2017). [CrossRef] [Google Scholar]
  • Amaro, S., Duarte, P., Travellers’ intention to purchase travel online: Integrating trust and risk to the theory of planned behaviour, Anatolia, 27, 389–400 (2016). [CrossRef] [Google Scholar]
  • Kim, D., Ferrin, D., Rao, J., A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents, Decision Support Systems, 44, 544–564. (2008). [CrossRef] [Google Scholar]
  • Eastlick, M. A., Lotz, S., Cognitive and institutional predictors of initial trust toward an online retailer, International Journal of Retail & Distribution Management, 39, 234–255 (2011). [CrossRef] [Google Scholar]
  • Dennis, C., Jayawardhena, C., Papamatthaiou, E. K., Antecedents of internet shopping intentions and the moderating effects of substitutability, The International Review of Retail, Distribution and Consumer Research, 20, 411–430 (2010). [CrossRef] [Google Scholar]
  • Peng, C., Kim, Y. G., Application of the stimuli-organism-response (S-O-R) framework to online shopping behavior, Journal of Internet Commerce, 13, 159–176 (2014). [CrossRef] [Google Scholar]
  • Mehrabian, A., James A. Russell, An Approach to Environmental Psychology, Cambridge, MA: The MIT Press. (1974). [Google Scholar]
  • Donovan R., Rossiter, J., Store atmosphere: an environmental psychology approach, J Retailing, 58, 34 – 57 (Spring) (1982). [Google Scholar]
  • Trivedi, J., Arora, P., Soni, S., The effect of social media communications on travellers’ brand switching intention: an Ecotel’s perspective, Tourism Recreation Research, 1-14. (2022). [Google Scholar]
  • Davis, F.D., Perceived usefulness, perceived ease of use, and user acceptance of information technology MIS quarterly, 13, 3, 319-340 (1989). [Google Scholar]
  • Koehn, D., The Nature of and Conditions for Online Trust, Journal of Business Ethics, 43, 3-19 (2003). [CrossRef] [Google Scholar]
  • Mcknight, D. H., Carter, M., Thatcher, J. B., Clay, P. F., Trust in a specific technology: An investigation of its components and measures, ACM Transactions on management information systems (TMIS), 2, 2, 1-25 (2011). [CrossRef] [Google Scholar]
  • Wu, H.C., What drives experiential loyalty? A case study of Starbucks coffee chain in Taiwan, British Food Journal, 119, 3, 468–496 (2017). [CrossRef] [Google Scholar]
  • McCole, P., Palmer, A., Transaction Frequency and Trust in Internet Buying Behaviour, Irish Marketing Review, 15 2, 35-50 (2002). [Google Scholar]
  • Chiu, Y. Bin, Lin, C. P., Tang, L. L., Gender differs: Assessing a model of online purchase intentions in e-tail service, International Journal of Service Industry Management, 16 5, 416–435 (2005). [CrossRef] [Google Scholar]
  • Kotler, P., Keller, K., Koshy, A., Jha, M. Marketing management, (South Asian Perspective), Dorling Kindersley (India) Pvt. Ltd. Licensees of Pearson Education in South Asia. (2009). [Google Scholar]
  • Chen, Y. Why Do Consumers Go Internet Shopping Again? Understanding The Antecedents of Repurchase Intention, Journal of Organisational Computing and Electronic Commerce, 22 1, 38-63 (2012). [CrossRef] [Google Scholar]
  • Park, J. Y., Kim, Y. S. A Study on University Students’ Purchase Experience and Repurchase Intention for Masstige, Journal of Consumption Culture, 11 4, 113-130 (2008). [CrossRef] [Google Scholar]
  • Prabhakar, P. K., et al. “Formulation and evaluation of polyherbal anti-acne combination by using in-vitro model.” Biointerface Res. Appl. Chem 10.1: 4747-4751 (2020). [Google Scholar]
  • Shim, S., Drake, M.F. Consumer intention to utilize electronic shopping. The Fishbein behavioral intention model, Journal of direct marketing, 4 3, 22-33 (1990). [CrossRef] [Google Scholar]
  • Mitchell, V. W. Consumer perceived risk: conceptualisations and models, European Journal of Marketing, 33 1/2, 163-195 (1999). [CrossRef] [Google Scholar]
  • Pavlou, P. A. Consumer acceptance of electronic commerce: integrating trust and risk with the technology acceptance model, International Journal of Electronic Commerce, 7 3, 69-103 (2003). [Google Scholar]
  • Bruner, G.C., Kumar, A. Web commercials and advertising hierarchy-of-effects, Journal of advertising research, 40 1-2, 35-42 (2000). [CrossRef] [Google Scholar]
  • Zhou, K.Z., Brown, J.R., Dev, C.S., Agarwal, S. The effects of customer and competitor orientations on performance in global markets: a contingency analysis, Journal of International Business Studies, 38 2, 303-319 (2007). [CrossRef] [Google Scholar]
  • Verhagen, T., Tan, Y.H., Meents, S. June. An empirical exploration of trust and risk associated with purchasing at electronic marketplaces, In Proceedings of the 17th Bled eCommerce Conference, 21-23 (2004). [Google Scholar]
  • Dutton, P. July. Trust Issues in E-commerce. In Proceedings of the 6th Australasian Women in Computing Workshop, 26. (2000). [Google Scholar]
  • Prabhakar, Pranav Kumar, et al. “Natural SIRT1 modifiers as promising therapeutic agents for improving diabetic wound healing.” Phytomedicine 76 : 153252. (2020). [CrossRef] [PubMed] [Google Scholar]
  • Singh, P., Keswani, S., Singh, S., Sharma, S. A study of adoption behavior for online shopping: an extension of TAM model, IJASSH, 4 07, 11-22 (2018). [Google Scholar]
  • Wolfinbarger, M., Gilly, M.C. Shopping online for freedom, control, and fun, Calif. Management. Review, 43 2, 34–55 (2001). [Google Scholar]
  • Sohn, S., Seegebarth, B., Moritz, M. The impact of perceived visual complexity of mobile online shops on user’s satisfaction, Psychological Marketing, 34 2, 195–214 (2017). [CrossRef] [Google Scholar]
  • Corbitt B. J., Thanasankit T, Yi, H. Trust and ecommerce: a study of consumer perceptions, Electronic Commerce Research and Applications, 2 3, 203-215 (2003). [CrossRef] [Google Scholar]
  • Venkatesh, V., Davis, F. D. A theoretical extension of the technology acceptance model: Four longitudinal field studies, Management Science, 46 2, 186-204 (2000). [CrossRef] [Google Scholar]
  • Suki, N.M., Ramayah, T. User acceptance of the e-government services in Malaysia: structural equation modelling approach, Interdisciplinary Journal of Information, Knowledge, and Management, 5 1, 395-413 (2010). [CrossRef] [Google Scholar]
  • Lee, K.S., Tan, S.J. E-retailing versus physical retailing: A theoretical model and empirical test of consumer choice, Journal of Business Research, 56 11, 877-885 (2003). [CrossRef] [Google Scholar]
  • Lim, W. M., Antecedents and consequences of e-shopping: An integrated model, Internet Research, 25, 184–217 (2015). [CrossRef] [Google Scholar]
  • Park, J., Stoel, L. Effect of brand familiarity, experience and information on online apparel purchase, International Journal of Retail & Distribution Management, 33 2, 148-160 (2005). [Google Scholar]
  • Almousa, M. The influence of risk perception in online purchasing behavior: Examination of an early-stage online market, International Review of Management and Business Research, 3 2, 779 (2014). [Google Scholar]
  • Zhang, L., Long, L., Xu, Y., Tan, W. The Influences of Perceived Factors on Consumer Purchasing Behavior: In the Perspective of Online Shopping Capability of Consumers, Research Journal of Applied Sciences, Engineering and Technology, 5 24, 5632-5638 (2013). [CrossRef] [Google Scholar]
  • Sullivan, Y. W., Kim, D. J. Assessing the effects of consumers’ product evaluations and trust on repurchase intention in e-commerce environments, International Journal of Information Management, 39, 199–219 (2018). [CrossRef] [Google Scholar]
  • Chang, H. H., Chen, S. W. The impact of online store environment cues on purchase intention: Trust and perceived risk as a mediator Online information review, 32 No6, 818-841 (2008). [Google Scholar]
  • Adams, D.A., Nelson, R.R., Todd, P.A. Perceived usefulness, ease of use, and usage of information technology: A replication, MIS Quarterly, 16, 227-247 (1992). [CrossRef] [Google Scholar]
  • Taylor, D.G., Strutton, D. Has e-marketing come of age? Modeling historical influences on post-adoption era Internet consumer behaviors, Journal of business research, 63, 950-956 (2010). [CrossRef] [Google Scholar]
  • Tandon, U., Kiran, R., Sah, A. Analyzing customer satisfaction: users’ perspective towards online shopping, Nankai Business Review International, 8, 3, 266–288 (2017). [CrossRef] [Google Scholar]
  • Leeraphong, A., Mardjo, A. Trust and Risk in Purchase Intention through Online Social Network: A Focus Group Study of Facebook in Thailand, Journal of Economics, Business and Management, 1 4, 314-318 (2013). [CrossRef] [Google Scholar]
  • Wu, H. C., Cheng, C. C. Relationships between experiential risk, experiential benefits, experiential evaluation, experiential co-creation, experiential relationship quality, and future experiential intentions to travel with pets Journal of Vacation Marketing, 26 1, 108-129 (2020). [Google Scholar]
  • Hausman, A. V., Siekpe, J. S. The effect of web interface features on consumer online purchase intentions, Journal of business research, 62 1, 5-13 (2009). [CrossRef] [Google Scholar]
  • Rehman, S. U., Bhatti, A., Mohamed, R., Ayoup, H. The moderating role of trust and commitment between consumer purchase intention and online shopping behavior in the context of Pakistan, Journal of Global Entrepreneurship Research, 9 1, 1-25 (2019). [CrossRef] [Google Scholar]
  • Athapaththu, J. C., Kulathunga, K. M. S. D. Factors affecting online purchase intention: A study of Sri Lankan online customers, International Journal of Scientific & Technology Research, 7 9, 120-128 (2018). [Google Scholar]
  • Hair, J. F., Ringle, C. M., Sarstedt, M. Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance, long range planning, 46 1-2, 1-12 (2013). [CrossRef] [Google Scholar]
  • Jun, M., Yang, Z., Kim, D. Customers’ perceptions of online retailing service quality and their satisfaction, International Journal of Quality & Reliability Management, 21 8, 817-840 (2004). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.