Open Access
Issue
BIO Web Conf.
Volume 89, 2024
The 4th Sustainability and Resilience of Coastal Management (SRCM 2023)
Article Number 01003
Number of page(s) 13
Section Environmental Monitoring and Sustainability
DOI https://doi.org/10.1051/bioconf/20248901003
Published online 23 January 2024
  • Wang, L., Xu, Z., Gong, X., Zhang, P., Hao, Z., You, J., Zhao, X. & Guo, X. Estimation of nitrate concentration and its distribution in the northwestern Pacific Ocean by a deep neural network model. Deep. Res. Part I Oceanogr. Res. Pap. 195, 104005 (2023). [CrossRef] [Google Scholar]
  • Durairaj, P., Sarangi, R. K., Ramalingam, S., Thirunavukarassu, T. & Chauhan, P. Seasonal nitrate algorithms for nitrate retrieval using OCEANSAT-2 and MODIS-AQUA satellite data. Environ. Monit. Assess. 187, 1–15 (2015). [CrossRef] [PubMed] [Google Scholar]
  • Chen, S., Meng, Y., Lin, S., Yu, Y. & Xi, J. Estimation of sea surface nitrate from space: Current status and future potential. Sci. Total Environ. 899, (2023). [Google Scholar]
  • Ascani, F., Richards, K., Firing, E., Grant, S., Jhonson, K. S., Jia, Y., Lukas, R. & Karl D. M. Physical and biological controls of nitrate concentrations in the upper subtropical North Pacific Ocean. Deep. Res. Part II Top. Stud. Oceanogr. 93, 119–134 (2013). [CrossRef] [Google Scholar]
  • Voss, M., Bange, H., Dippner, J., Middelburg, J. J., Montoya, J. P. & Ward, B. The marine nitrogen cycle: Recent discoveries, uncertaintiesand the potential relevance of climate change. Philos. Trans. R. Soc. B Biol. Sci. 368, (2013). [Google Scholar]
  • Hu, J. & Wang, X. H. Progress on Upwelling Studies In The China Seas. Rev. Geophys. 54, 653–673 (2016). [CrossRef] [Google Scholar]
  • Vinayachandran, P. N. M., Masumoto, Y., Roberts, M. J., Hugget, J. A., Halo, I., Chatterjee, A., Amol, P., Gupta, G. V. M., Singh, A., Mukherjee, A., Prakash, S., Beckley, L. E., Raes, E. J. & Hood, R. Reviews and syntheses: Physical and biogeochemical processes associated with upwelling in the Indian Ocean. Biogeosciences 18, 5967–6029 (2021). [CrossRef] [Google Scholar]
  • Song, X., Lai, Z., Ji, R., Chen, C., Zhang, J., Huang, L., Yin, J., Wang, Y., Lian, S. & Zhu, X. Summertime primary production in Northwest South China Sea: Interaction of coastal eddy, upwelling and biological processes. Cont. Shelf Res. 48, 110–121 (2012). [CrossRef] [Google Scholar]
  • Torres, R., Barton, E. D., Miller, P. & Fanjul, E. Spatial patterns of wind and sea surface temperature in the Galician upwelling region. J. Geophys. Res. Ocean. 108, 1–14 (2003). [Google Scholar]
  • Demarcq, H. Trends in primary production, sea surface temperature and wind in upwelling systems (1998-2007). Prog. Oceanogr. 83, 376–385 (2009). [CrossRef] [Google Scholar]
  • Witheetrirong, Y., Tripathi, N. K., Tipdecho, T. & Parkpian, P. Estimation of the effect of soil texture on nitrate-nitrogen content in groundwater using optical remote sensing. Int. J. Environ. Res. Public Health 8, 3416–3436 (2011). [CrossRef] [Google Scholar]
  • Silió-Calzada, A., Bricaud, A. & Gentili, B. Estimates of sea surface nitrate concentrations from sea surface temperature and chlorophyll concentration in upwelling areas: A case study for the Benguela system. Remote Sens. Environ. 112, 3173–3180 (2008). [CrossRef] [Google Scholar]
  • Switzer, A. C., Kamykowski, D. & Zentara, S. J. Mapping nitrate in the global ocean using remotely sensed sea surface temperature. J. Geophys. Res. Ocean. 108, (2003). [CrossRef] [PubMed] [Google Scholar]
  • Sarangi, R. K. Remote-Sensing-Based Estimation of Surface Nitrate and Its Variability in the Southern Peninsular Indian Waters. Int. J. Oceanogr. 2011, 1–16 (2011). [CrossRef] [Google Scholar]
  • Yin, J., Lin, L., Wang, Y. & Du, J. Temporal variability of temperature-nitrate relationship in a coastal region. Chinese J. Oceanol. Limnol. 32, 879–885 (2014). [CrossRef] [Google Scholar]
  • Fan, D. X., Huang, Y. L., Song, L. X., Liu, D. F., Zhang, G. & Zhang, B. Prediction of chlorophyll a concentration using HJ-1 satellite imagery for Xiangxi Bay in Three Gorges Reservoir. Water Sci. Eng. 7, 70–80 (2014). [Google Scholar]
  • Goes, J. I., Saino, T., Oaku, H., Ishisaka, J., Wong, C. S. & Nojiri, Y. Basin-scale estimates of Sea Surface Nitrate and New Production from remotely sensed Sea Surface Temperature and Chlorophyll. Geophys. Res. Lett. 27, 1263–1266 (2000). [CrossRef] [Google Scholar]
  • Yasunaka, S., Nojiri, Y., Nakaoka, S., Ono, T., Whitney, F. A. & Telszewski, M. Mapping of sea surface nutrients in the North Pacific: Basin_wide distribution and seasonal to interannual variability. J. Geophys. Res. Ocean. 7756–7771 (2014). [Google Scholar]
  • Sasmito, B., Bashit, N., Arinda, B. R. & Sukmono, A. Application of Generalized Additive Model for Identification of Potential Fishing Zones Using Aqua and Terra MODIS Imagery Data. J. Appl. Geospatial Inf. 6, 583–591 (2022). [CrossRef] [Google Scholar]
  • Semedi, B., Hardoko, Dewi, S. N. F. & Putri, D. N. F. A. GAM (Generalized Additive Model) Analysis for Predicting Potential Area of Lemuru in Bali Strait. JFMR-Journal Fish. Mar. Res. 6, (2022). [Google Scholar]
  • Ravindra, K., Rattan, P., Mor, S. & Aggarwal, A. N. Generalized additive models: Building evidence of air pollution, climate change and human health. Environ. Int. 132, 104987 (2019). [CrossRef] [Google Scholar]
  • Palacios, D. M., Hazen, E. L., Schroeder, I. D. & Bograd, S. J. Modeling the temperature-nitrate relationship in the coastal upwelling domain of the California Current. J. Geophys. Res. Ocean. 118, 3223–3239 (2013). [CrossRef] [Google Scholar]
  • Zhang, J., Zhi, M. & Zhang, Y. Combined Generalized Additive model and Random Forest to evaluate the influence of environmental factors on phytoplankton biomass in a large eutrophic lake. Ecol. Indic. 130, 108082 (2021). [CrossRef] [Google Scholar]
  • Liu, L., Li, A., Zhu, L., Xue, S., Li, J., Zhang, C., Yu, W., Ma, Z., Zhuang, H., Jiang, Z. & Mao, Y. The Application of the Generalized Additive Model to Represent Macrobenthos near Xiaoqing Estuary, Laizhou Bay. Biology (Basel). 12, (2023). [Google Scholar]
  • Richards, R., Chaloupka, M., Strauss, D. & Tomlinson, R. Using Generalized Additive Modelling to Understand the Drivers of Long-Term Nutrient Dynamics in the Broadwater Estuary (a Subtropical Estuary), Gold Coast, Australia. J. Coast. Res. 298, 1321–1329 (2014). [CrossRef] [Google Scholar]
  • Barton, N. A., Farewell, T. S. & Hallett, S. H. Using generalized additive models to investigate the environmental effects on pipe failure in clean water networks. npj Clean Water 3, 20–22 (2020). [CrossRef] [PubMed] [Google Scholar]
  • Hastie, T. & Tibshirani, R. Generalized additive models for medical research. Stat. Methods Med. Res. 4, 187–196 (1995). [CrossRef] [PubMed] [Google Scholar]
  • James, G., Daniela Witten, Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning wth application in R. (2013). [Google Scholar]
  • Zhang, Z., Zhang, J., Ye, X., Ma, K. & Li, H. Correlation Analysis and Prediction Model of Thermal Protection Performance of Aramid 1414 Fabric. Polymers (Basel). 15, (2023). [Google Scholar]
  • Prematunga, R. K. Correlational analysis. Aust. Crit. Care 25, 195–199 (2012). [CrossRef] [Google Scholar]
  • Opinion, A. G. R., De Boeck, G. & Rodgers, E. M. Synergism between elevated temperature and nitrate: Impact on aerobic capacity of European grayling, Thymallusthymallus in warm, eutrophic waters. Aquat. Toxicol. 226, 105563 (2020). [CrossRef] [Google Scholar]
  • Nishino, S., Kawaguchi, Y., Inoue, J., Yamamoto-Kawai, M., Aoyama, M., Harada, N. & Kikuchi, T. Do Strong Winds Impact Water Mass, Nutrient, and Phytoplankton Distributions in the Ice-Free Canada Basin in the Fall? J. Geophys. Res. Ocean. 125, (2020). [CrossRef] [Google Scholar]
  • Xu, A., Jin, M., Wu, Y. & Qi, D. Response of nutrients and primary production to high wind and upwelling-favorable wind in the Arctic Ocean: A modeling perspective. Front. Mar. Sci. 10, 1–17 (2023). [Google Scholar]
  • Matarrese, R., De Pasquale, V., Guerriero, L., Morea, A., Pasquariello, G., Umgiesser, G., Scroccaro, I. & Alabiso, G. Comparison between remote-sensed data and in situ measurements in coastal waters: The Taranto Sea case. Chem. Ecol. 20, 225–237 (2004). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.