Open Access
Issue
BIO Web Conf.
Volume 89, 2024
The 4th Sustainability and Resilience of Coastal Management (SRCM 2023)
Article Number 02001
Number of page(s) 9
Section Technology and Management Related to Marine and Fisheries Resources
DOI https://doi.org/10.1051/bioconf/20248902001
Published online 23 January 2024
  • D. V. Arockiadas, “Establishment of Deformation Pattern in Kanchankayi East-Hulkal-Halbhavi Sector of Kurlagere-Gogi-Gundanahalli (KG) Fault and its Implications on Uranium Mineralisation, Yadgir District, Karnataka” (2021). [Google Scholar]
  • A. W. Hastuti, M. Nagai, and K. I. Suniada, “Coastal Vulnerability Assessment of Bali Province, Indonesia Using Remote Sensing and GIS Approaches,” Remote Sens., vol. 14, no. 17 (2022), doi: 10.3390/rs14174409. [CrossRef] [Google Scholar]
  • W. Utama, D. P. N. Putra, R. F. Indriani, and S. A. Garini, “Subsurface Identification using Resistivity Method for Infrastructure Planning in Benowo Area, Surabaya City,” IOP Conf. Ser. Earth Environ. Sci., vol. 1250, no. 1, p. 012018 (2023), doi: 10.1088/1755-1315/1250/1/012018. [CrossRef] [Google Scholar]
  • H. Ren, Y. Zhao, W. Xiao, and Z. Hu, “A review of UAV monitoring in mining areas: current status and future perspectives,” Int. J. Coal Sci. Technol., vol. 6, no. 3, pp. 320–333 (2019), doi: 10.1007/s40789-019-00264-5. [CrossRef] [Google Scholar]
  • A. Mohan, A. K. Singh, B. Kumar, and R. Dwivedi, “Review on remote sensing methods for landslide detection using machine and deep learning,” Trans. Emerg. Telecommun. Technol., vol. 32, no. 7 (2021), doi: 10.1002/ett.3998. [Google Scholar]
  • W. Utama, D. P. N. Putra, S. A. Garini, and R. F. Indriani, “Optimizing Surface Lithology Interpretation from Global Gravity Model and Landsat 8 Satellite Imagery in Semeru Mountain, Indonesia,” IOP Conf. Ser. Earth Environ. Sci., vol. 1276 (2023), doi: 10.1088/1755-1315/1276/1/012048. [CrossRef] [Google Scholar]
  • P. Yang, “Advances in Mine Pit Wall Geological Mapping using Unmanned Aerial Vehicle Technology and Deep Learning Advances in Mine Pit Wall Geological Mapping using Unmanned” University of Toronto (2023). [Google Scholar]
  • Y. Lai, Y. Wang, J. Cheng, X. Chen, and Q. Liu, “Review of constraints and critical success factors of developing urban underground space,” Undergr. Sp., vol. 12, pp. 137–155 (2023), doi: 10.1016/j.undsp.2023.03.001. [CrossRef] [Google Scholar]
  • L. Jianzhong et al., “Geological conditions, reservoir evolution and favorable exploration directions of marine ultra-deep oil and gas in China,” Pet. Explor. Dev., vol. 48, no. 1, pp. 60–79 (2021), doi: 10.1016/S1876-3804(21)60005-8. [CrossRef] [Google Scholar]
  • N. E. Benti, T. A. Woldegiyorgis, C. A. Geffe, G. S. Gurmesa, M. D. Chaka, and Y. S. Mekonnen, “Overview of geothermal resources utilization in Ethiopia: Potentials, opportunities, and challenges,” Sci. African, vol. 19, p. e01562 (2023), doi: 10.1016/j.sciaf.2023.e01562. [Google Scholar]
  • Z. He, J. Feng, J. Luo, and Y. Zeng, “Distribution, exploitation, and utilization of intermediate-to-deep geothermal resources in eastern China,” Energy Geosci., vol. 4, no. 4, p. 100187 (2023), doi: 10.1016/j.engeos.2023.100187. [CrossRef] [Google Scholar]
  • G. Luti, “Evaluation of reservior production trends on Olkaria Geothermal field” University of Nairobi (2020). [Google Scholar]
  • S. A. Yusroni, V. T. Kemalasari, and D. P. N. Putra, “Identification of Land Cover Changesfrom Landsat 8 Oli Satellite Imagery Using Normalized Difference Vegetation Index (Ndvi) Method (Study Case: Surabaya),” J. Mar. Sci. Technol., vol. 2, no. 1, pp. 5–10 (2021), doi: 10.12962/j27745449.v2i1.74. [Google Scholar]
  • R. Avtar et al., “Assessing sustainable development prospects through remote sensing: A review,” Remote Sens. Appl. Soc. Environ., vol. 20, no. September, p. 100402 (2020), doi: 10.1016/j.rsase.2020.100402. [Google Scholar]
  • D. Ejemeyovwi, B. Achima, C. O.-K. J. of S. Sciences, and U. 2023, “Remote Sensing Satellite Systems and Capabilities in Mapping Environmental Resources,” KIU J. Soc. Sci., vol. 9, no. 1, pp. 117–124 (2023), [Online]. Available: https://ijhumas.com/ojs/index.php/kiujoss/article/view/1599. [Google Scholar]
  • G. Godif and B. R. Manjunatha, “Delineation of groundwater potential zones using remotely sensed data and GIS-based analytical hierarchy process: Insights from the Geba river basin in Tigray, Northern Ethiopia,” J. Hydrol. Reg. Stud., vol. 46, no. February, p. 101355 (2023), doi: 10.1016/j.ejrh.2023.101355. [CrossRef] [Google Scholar]
  • A. Retallack, G. Finlayson, B. Ostendorf, K. Clarke, and M. Lewis, “Remote sensing for monitoring rangeland condition: Current status and development of methods,” Environ. Sustain. Indic., vol. 19, no. March, p. 100285 (2023), doi: 10.1016/j.indic.2023.100285. [Google Scholar]
  • A. A. El-Raouf et al., “Utilizing Remote Sensing and Satellite-Based Bouguer Gravity data to Predict Potential Sites of Hydrothermal Minerals and Gold Deposits in Central Saudi Arabia,” Minerals, vol. 13, no. 8, pp. 1–21 (2023), doi: 10.3390/min13081092. [Google Scholar]
  • A. Eskandari, M. Hosseini, and E. Nicotra, Application of Satellite Remote Sensing, UAV-Geological Mapping, and Machine Learning Methods in the Exploration of Podiform Chromite Deposits, vol. 13, no. 2 (2023). [Google Scholar]
  • M. K. Rizki et al., “Gravity Anomaly Evaluation of the Geothermal Field Distribution Around the Seismo-Volcanic Area of Toba Lake,” J. Phys. Conf. Ser., vol. 2377, no. 1 (2022), doi: 10.1088/1742-6596/2377/1/012042. [CrossRef] [Google Scholar]
  • A. Setyawan, L. M. Khusna, J. E. Suseno, D. I. Rina, T. Yulianto, and Y. Aribowo, “Detecting hot spring manifestations based on gravity data satellite on mountain Lawu,” J. Phys. Conf. Ser., vol. 1943, no. 1 (2021), doi: 10.1088/1742-6596/1943/1/012034. [CrossRef] [Google Scholar]
  • F. Flechtner, C. Reigber, R. Rummel, and G. Balmino, Satellite Gravimetry: A Review of Its Realization, vol. 42, no. 5. Springer Netherlands (2021). [Google Scholar]
  • M. Noeker and Ö. Karatekin, “The wedge-pentahedra method (WPM): Topographic reduction of local terrain in the context of solar system surface gravimetry and robotic exploration,” Front. Sp. Technol., vol. 3, no. September, pp. 1–17 (2022), doi: 10.3389/frspt.2022.982873. [Google Scholar]
  • G. Curzi, D. Modenini, and P. Tortora, “Large constellations of small satellites: A survey of near future challenges and missions,” Aerospace, vol. 7, no. 9 (2020), doi: 10.3390/AEROSPACE7090133. [CrossRef] [Google Scholar]
  • S. E. Kozhaya, J. A. Haidar-Ahmad, A. A. Abdallah, Z. M. Kassas, and S. S. Saab, “Comparison of neural network architectures for simultaneous tracking and navigation with LEO satellites,” Proc. 34th Int. Tech. Meet. Satell. Div. Inst. Navig. ION GNSS+ 2021, pp. 2507–2520 (2021), doi: 10.33012/2021.18110. [Google Scholar]
  • K. F. Townsend, M. K. Clark, and D. Zekkos, “Profiles of Near-Surface Rock Mass Strength Across Gradients in Burial, Erosion, and Time,” J. Geophys. Res. Earth Surf., vol. 126, no. 4, pp. 1–21 (2021), doi: 10.1029/2020JF005694. [CrossRef] [Google Scholar]
  • D. P. N. Putra, M. H. M. Fajar, D. D. Warnana, A. Widodo, F. Ulumuddin, and S. Z. Zukhrufah, “Subsurface Analysis on Ranu Grati Lineaments with Satellite Gravity Data,” J. Penelit. Pendidik. IPA, vol. 9, no. 10, pp. 8462–8466 (2023), doi: 10.29303/jppipa.v9i10.3400. [CrossRef] [Google Scholar]
  • F. Ghione, A. Köhler, A. M. Dichiarante, I. Aarnes, and V. Oye, “Vs30 and depth to bedrock estimates from integrating HVSR measurements and geology-slope approach in the Oslo area, Norway,” Front. Earth Sci., vol. 11, no. August, pp. 1–19 (2023), doi: 10.3389/feart.2023.1242679. [CrossRef] [Google Scholar]
  • W. Utama, S. A. Garini, M. C. Hutapea, D. P. N. Putra, D. D. Warnana, and W. Lestari, “Effect of Geometry and Number of Seismic Stations on Micro-Earthquake (MEQ) Hypocenters in Geothermal Fields,” J. Penelit. Pendidik. IPA, vol. 9, no. 10, pp. 8114–8123 (2023), doi: 10.29303/jppipa.v9i10.3742. [CrossRef] [Google Scholar]
  • J. Maringue, E. Sáez, and G. Yañez, “An empirical correlation between the residual gravity anomaly and the h/v predominant period in urban areas and its dependence on geology in andean forearc basins,” Appl. Sci., vol. 11, no. 20 (2021), doi: 10.3390/app11209462. [CrossRef] [Google Scholar]
  • C. Hirt, S. Claessens, T. Fecher, M. Kuhn, R. Pail, and M. Rexer, “New ultrahigh-resolution picture of Earth’s gravity field,” Geophys. Res. Lett., vol. 40, no. 16, pp. 4279–4283 (2013), doi: 10.1002/grl.50838. [CrossRef] [Google Scholar]
  • T. R. Loveland and J. R. Irons, “Landsat 8: The plans, the reality, and the legacy,” Remote Sens. Environ., vol. 185, pp. 1–6 (2016), doi: 10.1016/j.rse.2016.07.033. [CrossRef] [Google Scholar]
  • D. C. Heath, D. J. Wald, C. B. Worden, E. M. Thompson, and G. M. Smoczyk, “A global hybrid VS30 map with a topographic slope–based default and regional map insets,” Earthq. Spectra, vol. 36, no. 3, pp. 1570–1584 (2020), doi: 10.1177/8755293020911137. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.