Open Access
Issue |
BIO Web Conf.
Volume 89, 2024
The 4th Sustainability and Resilience of Coastal Management (SRCM 2023)
|
|
---|---|---|
Article Number | 03001 | |
Number of page(s) | 9 | |
Section | Green and Clean Technology for Coastal Area | |
DOI | https://doi.org/10.1051/bioconf/20248903001 | |
Published online | 23 January 2024 |
- Neha, & Joon, R. (2021). Renewable Energy Sources: A Review. Journal of Physics: Conference Series, 1979(1), 012023. https://doi.org/10.1088/17426596/1979/1/012023 [CrossRef] [Google Scholar]
- Ragupathy, P., Bhat, S. D., & Kalaiselvi, N. (2023). Electrochemical energy storage and conversion: An overview. WIREs Energy and Environment, 12(2), e464. https://doi.org/10.1002/wene.464 [CrossRef] [Google Scholar]
- Olabi, A. G., Abbas, Q., Al Makky, A., & Abdelkareem, M. A. (2022). Supercapacitors as next generation energy storage devices: Properties and applications. Energy, 248, 123617. https://doi.org/10.1016/j.energy.2022.123617 [CrossRef] [Google Scholar]
- Benoy, S. M., Pandey, M., Bhattacharjya, D., & Saikia, B. K. (2022). Recent trends in supercapacitor-battery hybrid energy storage devices based on carbon materials. Journal of Energy Storage, 52, 104938. https://doi.org/10.1016/j.est.2022.104938 [CrossRef] [Google Scholar]
- Pal, B., Yang, S., Ramesh, S., Thangadurai, V., & Jose, R. (2019). Electrolyte selection for supercapacitive devices: A critical review. Nanoscale Advances, 1(10), 3807–3835. https://doi.org/10.1039/C9NA00374F [CrossRef] [PubMed] [Google Scholar]
- Yu, L., & Chen, G. Z. (2019). Ionic Liquid-Based Electrolytes for Supercapacitor and Supercapattery. Frontiers in Chemistry, 7, 272. https://doi.org/10.3389/fchem.2019.00272 [CrossRef] [PubMed] [Google Scholar]
- Iqbal, M. Z., Zakar, S., & Haider, S. S. (2020). Role of aqueous electrolytes on the performance of electrochemical energy storage device. Journal of Electroanalytical Chemistry, 858, 113793. https://doi.org/10.1016/j.jelechem.2019.113793 [CrossRef] [Google Scholar]
- Yao, P., Yu, H., Ding, Z., Liu, Y., Lu, J., Lavorgna, M., Wu, J., & Liu, X. (2019). Review on Polymer-Based Composite Electrolytes for Lithium Batteries. Frontiers in Chemistry, 7, 522. https://doi.org/10.3389/fchem.2019.00522 [CrossRef] [PubMed] [Google Scholar]
- Chauhan, J. K., Yadav, D., Yadav, M., Kumar, M., Tiwari, T., & Srivastava, N. (2020). NaClO4 added, corn and arrowroot starch based economical, high conducting electrolyte membranes for flexible energy devices. SN Applied Sciences, 2(5), 899. https://doi.org/10.1007/s42452-020-2660-0 [CrossRef] [Google Scholar]
- Khiar, A. S. A., Anuar, M. R. S., & Md Parid, M. A. (2016). Effect of 1-Ethyl-3Methylimidazolium Nitrate on the Electrical Properties of Starch/Chitosan Blend Polymer Electrolyte. Materials Science Forum, 846, 510–516. https://doi.org/10.4028/www.scientific.net/MSF.846.510 [CrossRef] [Google Scholar]
- Hamidah, N. L., Shintani, M., Ahmad Fauzi, A. S., Mission, E. G., Hatakeyama, K., Quitain, A. T., & Kida, T. (2019). Improving the proton conductivity of graphene oxide membranes by intercalating cations. SN Applied Sciences, 1(6), 630. https://doi.org/10.1007/s42452-019-0641-y [CrossRef] [Google Scholar]
- Liu, S., Li, G.-R., & Gao, X.-P. (2016). Lanthanum Nitrate As Electrolyte Additive To Stabilize the Surface Morphology of Lithium Anode for Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 8(12), 7783–7789. https://doi.org/10.1021/acsami.5b12231 [CrossRef] [PubMed] [Google Scholar]
- Teo, L. P., Buraidah, M. H., & Arof, A. K. (2021). Development on Solid Polymer Electrolytes for Electrochemical Devices. Molecules, 26(21), 6499. https://doi.org/10.3390/molecules26216499 [CrossRef] [PubMed] [Google Scholar]
- Dome, K., Podgorbunskikh, E., Bychkov, A., & Lomovsky, O. (2020). Changes in the Crystallinity Degree of Starch Having Different Types of Crystal Structure after Mechanical Pretreatment. Polymers, 12(3), 641. https://doi.org/10.3390/polym12030641 [CrossRef] [PubMed] [Google Scholar]
- Wang, B., Xu, X., Fang, Y., Yan, S., Cui, B., & Abd El-Aty, A. M. (2022). Effect of Different Ratios of Glycerol and Erythritol on Properties of Corn Starch-Based Films. Frontiers in Nutrition, 9, 882682. https://doi.org/10.3389/fnut.2022.882682 [CrossRef] [PubMed] [Google Scholar]
- Surendren, A., Mohanty, A. K., Liu, Q., & Misra, M. (2022). A review of biodegradable thermoplastic starches, their blends and composites: Recent developments and opportunities for single-use plastic packaging alternatives. Green Chemistry, 24(22), 8606–8636. https://doi.org/10.1039/D2GC02169B [CrossRef] [Google Scholar]
- St-Onge, V., Cui, M., Rochon, S., Daigle, J.-C., & Claverie, J. P. (2021). Reducing crystallinity in solid polymer electrolytes for lithium-metal batteries via statistical copolymerization. Communications Materials, 2(1), 83. https://doi.org/10.1038/s43246-021-00187-2 [CrossRef] [Google Scholar]
- Mendhe, A., & Panda, H. S. (2023). A review on electrolytes for supercapacitor device. Discover Materials, 3(1), 29. https://doi.org/10.1007/s43939-023-00065-3 [CrossRef] [Google Scholar]
- Kwon, H.-N., Jang, S.-J., Kang, Y. C., & Roh, K. C. (2019). The effect of ILs as cosalts in electrolytes for high voltage supercapacitors. Scientific Reports, 9(1), 1180. https://doi.org/10.1038/s41598-018-37322-y [CrossRef] [PubMed] [Google Scholar]
- Mai, L., Li, H., Zhao, Y., Xu, L., Xu, X., Luo, Y., Zhang, Z., Ke, W., Niu, C., & Zhang, Q. (2013). Fast Ionic Diffusion-Enabled Nanoflake Electrode by Spontaneous Electrochemical Pre-Intercalation for High-Performance Supercapacitor. Scientific Reports, 3(1), 1718. https://doi.org/10.1038/srep01718 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.