Open Access
Issue
BIO Web Conf.
Volume 93, 2024
International Scientific Forestry Forum 2023: Forest Ecosystems as Global Resource of the Biosphere: Calls, Threats, Solutions (Forestry Forum 2023)
Article Number 01002
Number of page(s) 9
Section Forestry, Forest Management and Multipurpose Use of Forests
DOI https://doi.org/10.1051/bioconf/20249301002
Published online 20 March 2024
  • Nielsen S N, Müller F, Marques J C, Bastianoni S and Jorgensen S E 2020 Thermodynamics in Ecology—An Introductory Review. Entropy 22(8) 820 https://doi.org/10.3390/e22080820 [CrossRef] [PubMed] [Google Scholar]
  • Jorgensen S E and Svirezhev Y V 2004 Towards a Thermodynamic Theory for Ecological Systems (Oxford: Elsevier) p 366 [Google Scholar]
  • Sáez-Cano G, Marvá M, Ruiz-Benito P and Zavala M A 2021 Modelling Tree Growth in Monospecific Forests from Forest Inventory Data. Forests 12 753 https://doi.org/10.3390/f12060753 [CrossRef] [Google Scholar]
  • Dubenok N N, Lebedev A V and Kuzmichev V V 2022 The dynamic model of pine crops thinning. Proceedings of the St. Petersburg Forestry Academy 239 6 doi: 10.21266/2079-4304.2022.239.6-21 [in Russian with English summary] [Google Scholar]
  • Korzukhin M D 2019 Generalized von Bertalanffy’s modeling applied to yield curve calculation based on the state forest inventory data. Russian Journal of Forest Science 2 105 doi: 10.1134/S0024114819020049 [In Russian] [Google Scholar]
  • Berezovskaya F S and Karev G P 2015 Modeling of forest dynamics. Siberian Journal of Forest Science 3 7 doi: 10.15372/SJFS20150302 [in Russian with English abstract] [Google Scholar]
  • Alexandrov G A and Golitsyn G S 2012 A similarity criterion for the forest stand growth. Doklady Biological Sciences 446(1) 293 [In Russian] [CrossRef] [PubMed] [Google Scholar]
  • Grabarnik P Ya, Shanin V N, Chertov O G, Priputina I V, Bykhovets S S, Petropavlovsky B S, Frolov P V, Zubkova E V, Shashkov M P and Frolova G G 2019 Modelling of forest ecosystem dynamics: an instrument for forest prediction and management. Russian Journal of Forest Science 6 488 doi: 10.1134/S0024114819030033 [In Russian] [Google Scholar]
  • Komarov A S, Chertov O G, Mikhailov A V, Abakumov E V, Andrienko G, Andrienko N, Apps M, Bobrovsky M V, Bhatti D, Bykhovets S, S, Glukhova E M, Grabarnik P Ya, Zubkova E V, Zudin S L, Zudina E V, Kubasova T S, Lukyanov A M, Martynkin A V, Moren F, Priputina I V, Smirnov V E, Khanina L, G, Shanin V N and Sho S 2007 Modeling Organic Matter Dynamics in Forest Ecosystems (Moscow: The science) p 380 http://www.knigoprovod.ru/?book_id=3570;topic_id=23 [in Russian] [Google Scholar]
  • Zhang X, Cao Q V, Wang H, Duan A and Zhang J 2020 Projecting Stand Survival and Basal Area Based on a Self-Thinning Model for Chinese Fir Plantations. For. Sci. 66(3) 361 https://doi.org/10.1093/forsci/fxz086 [Google Scholar]
  • Shanin V N, Grabarnik P Ya, Bykhovets S S, Chertov O G, Priputina I V, Shashkov M P, Ivanova N V, Stamenov M N, Frolov P V, Zubkova E V and Ruchinskaya E V 2019 Parameterization of Productivity Model for the Most Common Trees Species in European Part of Russia for Simulation of Forest Ecosystem Dynamics. Mathematical Biology and Bioinformatics 14(1) 54 https://doi.org/10.17537/2019.14.54 [in Russian] [Google Scholar]
  • Sokolov A V, Bolondinsky V K and Voloshinov V V 2019 Technology of Balanced Identification for Selection of Pine Transpiration Mathematical Model. Mathematical Biology and Bioinformatics 14(2) 665 doi: 10.17537/2019.14.665 [in Russian] [Google Scholar]
  • Ogawa K 2018 Mathematical consideration of the age-related decline in leaf biomass in forest stands under the self-thinning law. Ecol. Modell. 372(C) 64 doi: 10.1016/j.ecolmodel.2018.01.015 [CrossRef] [Google Scholar]
  • Vatandaşlar C, Keleş C, Fosso L C and Karahalil U 2019 Analyzing the effects of different management strategies on forest biomass carbon loss using linear programming. Siberian Journal of Forest Science 1 65 doi: 10.15372/SJFS20190106 [Google Scholar]
  • Vdovin V M, Surkova L E, Valentinov V A 2013 Systems Theory and System Analysis: Textbook for Bachelors (Moscow: Publishing and Trade Corporation “Dashkov and K°”) p 644 [Google Scholar]
  • Korzukhin M D 1986 Towards an ecological-physiological modeling of forest dynamics Problems of Ecological Monitoring and Modeling of Ecosystems (Leningrad: Gidrometeoizdat) vol 9 pp 259–276 [in Russian] [Google Scholar]
  • Lisitsyn V I, Drapalyuk M V and Matveev N N 2022 Modeling the Forest Stand Growth Dynamics Based on the Thermodynamic Approach. Russian Forestry Journal 3 213 https://doi.org/10.37482/0536-1036– 2022-3-213-225 [in Russian] [Google Scholar]
  • Lisitsyn V I, Matveev N N and Saushkin V V 2021 Ecological and physiological modelling of mixed stand dynamics. IOP Conf. Ser.: Earth Environ. Sci. 875 012042 doi:10.1088/1755-1315/875/1/012042 [Google Scholar]
  • Alexandrov G A and Golitsyn G S 2015 Biological age from the viewpoint of the thermodynamic theory of ecological systems. Ecol. Model. 313(2) 103 doi: 10.1016/j.ecolmodel.2015.06.022 [CrossRef] [Google Scholar]
  • Shvidenko A Z, Shchepashchenko D G, Nilson S and Buluy Yu I Tables and Models of Growth and Biological Productivity of Plantations of the Main Forest Forming Species of Northern Eurasia (Regulatory and Reference Materials) 2008 (Moscow: Rosleskhoz, International Institute for Applied Systems Analysis) p 886 [in Russian] [Google Scholar]
  • Nash J E and Sutcliffe J V 1970 River flow forecasting through conceptual models рart I – A discussion of principles. J. Hydrology 10(3) 282 https://doi.org/10.1016/0022-1694(70)90255-6 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.