Open Access
Issue
BIO Web Conf.
Volume 93, 2024
International Scientific Forestry Forum 2023: Forest Ecosystems as Global Resource of the Biosphere: Calls, Threats, Solutions (Forestry Forum 2023)
Article Number 04009
Number of page(s) 7
Section Forest and Water, Forest Hydrology, Monitoring and Protection
DOI https://doi.org/10.1051/bioconf/20249304009
Published online 20 March 2024
  • L.N. Aleksandrov, O.A. Naydenova, – “Laboratory and practical classes on soil science”. Leningrad, “Agropromizdat”. – (Leningrad Department, 1986) [Google Scholar]
  • V.O. Targulyan, M.I. Gerasimova, World correlative base of soil resources: a basis for international classification and correlation of soils. – (M.: KMK, 2007) [Google Scholar]
  • Soils of the Armenian SSR/Edited by R.A.Edilyan, G.P.Petrosyan, N.N.Rozov. – (Yerevan: Hayastan, 1976) [Google Scholar]
  • S.Z. Kroyan, A.O. Markosyan, Humus condition of mountain chernozems and chestnut soils of the Republic of Armenia – Scientific and technical progress in agricultural production: materials of the International scientific and technical conference: in 3 vol./RUE “NPC NAS of Belarus on mechanization of agriculture”. Vol. 2. p. 124-128 (Minsk, 2014) [Google Scholar]
  • A.S. Fried, I.V. Kuznetsova, et.al., Zonal-provincial norms of changes in agrochemical, physico-chemical and physical indicators of the main arable soils of the European territory of Russia under anthropogenic impacts. Method. recommendations. (M.: Soil Institute named after V.V. Dokuchaev, 2010) [Google Scholar]
  • B.P. Akhtyrtsev, I.A. Lepilin, Biological Sciences 1, 89-97 (1987) [Google Scholar]
  • I.D. Chernichenko, V.P. Suetov, N.N. Zabugin, V.D. Zhukov, Degradation of Kuban chernozems from overwatering/// Russian chernozem 2000: Proceedings of the All-Russian scientific conference pp.258-263 (M., 2001) [Google Scholar]
  • M.I. Dergacheva, O.A. Nekrasova, N.L. Lavrik, Humic acids of modern soils of the Southern Urals (Novosibirsk: Preprint, 2002) [Google Scholar]
  • G.V. Dobrovolsky, V.D. Vasilievskaya, et.al., Factors and Types of Soil Degradation // Soil Degradation and Protection. (M.: Publishing House of Moskva University, 2002) [Google Scholar]
  • G.V. Dobrovolsky, E.D. Nikitin, Ecology of Soils. (Moscow: Publishing house of Moscow State University, 2006) [Google Scholar]
  • F.R. Zaidelman, Hydrological factor of anthropogenic soil degradation and measures of its prevention // Genesis and ecological bases of soil and landscape reclamation. – (M.: Publishing House “Book House University”, 2009) [Google Scholar]
  • L.A. Grishina, D.S. Orlova, System of indicators of humus state of soil // Theses of reports of the V delegate congress of the All-Union Society of Soil Scientists. – (Vyp. 2.– Minsk, 1977) [Google Scholar]
  • A.N. Zolotokrylin, Indicators of climatic desertification // Desertification of arid lands of Russia: new aspects of analysis, results, problems (Moscow: Partnership of scientific editions of KMK, 2009) [Google Scholar]
  • W.E.H. Blum, Characterization of soil degradation risk: an overview // Threats to Soil Quality in Europe. (2008) [Google Scholar]
  • A. Canarache, Soil degradation processes in the area with desertification risk in Romania. UNESCO.-(Bled, Slovenia, 2005) [Google Scholar]
  • T.F. Urushadze, G.O. Ghamashidze, Soils of Georgia. Soil Resources of Mediterranean and Caucasus Countries. Extension of the European Soil Database (2013) [Google Scholar]
  • H.Blanco-Canqui, S.J. Ruis, Geoderma 326, 164–200 (2018) [CrossRef] [Google Scholar]
  • N. Garcia-Franco, M. Almagro, Strip, precision, zone tillage. In Recarbonizing Global Soils: A Technical Manual of Best Management Practices; FAO, ITPS, Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 3, 85–95 (2021) [Google Scholar]
  • R. Lal, Tillage effects on soil degradation, soil resilience, soil quality, and sustainability. Soil Tillage Res. 27, 1–8 (1993) [CrossRef] [Google Scholar]
  • Claassen, R. ; Bowman, M. ; McFadden, J. ; Smith, D. ;Wallander, S. Tillage Intensity and Conservation Cropping in the United States; EIB-197; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2018; p. 27. [Google Scholar]
  • Sheehy, J. ; Regina, K. ; Alakukku, L. ; Six, J. Impact of no-till and reduced tillage on aggregation and aggregate-associated carbon in Northern European agroecosystems. Soil Tillage Res. 2015, 150, 107–113. [CrossRef] [Google Scholar]
  • Christopher, S.F. ; Lal, R. ; Mishra, U. Regional Study of No-Till Effects on Carbon Sequestration in the Midwestern United States. Soil Sci. Soc. Am. J. 2009, 73, 207–216. [CrossRef] [Google Scholar]
  • Nunes, M.R. ; van Es, H.M. ; Schindelbeck, R. ; Ristow, A.J. ; Ryan, M. No-till and cropping system diversification improve soil health and crop yield. Geoderma 2018, 328, 30–43. [Google Scholar]
  • Feiziene, D. ; Feiza, V. ; Slepetiene, A. ; Liaudanskiene, I. ; Kadziene, G. ; Deveikyte, I. ; Vaideliene, A. Long-Term Influence of Tillage and Fertilization on Net Carbon Dioxide Exchange Rate on Two Soils with Different Textures. J. Environ. Qual. 2011, 40, 1787–1796. [CrossRef] [PubMed] [Google Scholar]
  • Samvel Kroyan, Suren Tovmasyan, Paruyr Efendyan, and Anush Margaryan Change of water-physical properties of mountainous meadow-chernozem soils of the republic of Armenia under the influence of anthropogenic factor. E3S Web of Conferences 420, 03003 (2023) https://doi.org/10.1051/e3sconf/202342003003EBWFF 2023. P. 1-7. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.