Open Access
BIO Web Conf.
Volume 94, 2024
The 8th International Conference on Biological Sciences “Leveraging Biodiversity to Support Green Economy and Climate Resilience” (ICBS 2023)
Article Number 01005
Number of page(s) 20
Section Bioinformatics and Computational Biology
Published online 25 March 2024
  • C.E. Couch, C.W. Epps, Host, microbiome, and complex space: applying population and landscape genetic approaches to gut microbiome research in wild populations, J. Hered. 113, 3 (2022) [Google Scholar]
  • L. Combrink, I.R. Humphreys, Q. Washburn, H.K. Arnold, K. Stagaman, K.D. Kasschau, T.J. Sharpton, Best practice for wildlife gut microbiome research: A comprehensive review of methodology for 16S rRNA gene investigations, Front. Microbiol. 14, 1092216 (2023) [Google Scholar]
  • N. Othman, K. Munian, H. Haris, F.F. Ramli, N.H. Sariyati, A Review on Next-Generation Wildlife Monitoring using Environmental DNA (eDNA) Detection and Next-Generation Sequencing in Malaysia. Sains Malays. 52, 1 (2023) [Google Scholar]
  • M. Sidhu, D. van der Poorten, The gut microbiome, Aust. Fam. Physician. 46, 4 (2017) [Google Scholar]
  • T.A. Suzuki, Links between natural variation in the microbiome and host fitness in wild mammals, Integr. Comp. Biol. 57, 4 (2017) [Google Scholar]
  • G. Fackelmann, M.A. Gillingham, J. Schmid, A.C. Heni, K. Wilhelm, N. Schwensow, S. Sommer, Human encroachment into wildlife gut microbiomes, Commun. Biol. 4, 1 (2021) [Google Scholar]
  • L. Zhu, W. Jianjun, S. Bahrndorff, The wildlife gut microbiome and its implication for conservation biology, Front. Microbiol. 12, 1617 (2021) [Google Scholar]
  • J. Tung, L.B. Barreiro, M.B. Burns, J.C. Grenier, J. Lynch, L.E. Grieneisen, E.A. Archie, Social networks predict gut microbiome composition in wild baboons, eLife. 4, e05224 (2015) [Google Scholar]
  • J.F. Cryan, K.J. O’Riordan, C.S. Cowan, K.V. Sandhu, T.F. Bastiaanssen, M. Boehme, T.G. Dinan, The microbiota-gut-brain axis, Physiol. Rev. (2019) [Google Scholar]
  • J. Nagpal, J.F. Cryan, Host genetics, the microbiome & behaviour—A ‘Holobiont’ perspective, Cell Res. 31, 8 (2021) [Google Scholar]
  • L. Zhu, Animal social behaviour and gut microbiome, Front. Microbiol. 14, 1210717 (2023) [Google Scholar]
  • S.M. O’Mahony, J.R. Marchesi, P. Scully, C. Codling, A.M. Ceolho, E.M. Quigley, T.G. Dinan, Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses, Biol. Psychiatry 65, 3 (2009) [Google Scholar]
  • I. Hanning, S. Diaz-Sanchez, The functionality of the gastrointestinal microbiome in non-human animals, Microbiome 3, 1-11 (2015) [CrossRef] [PubMed] [Google Scholar]
  • R.E. Antwis, K.L. Edwards, B. Unwin, S.L. Walker, S. Shultz, Rare gut microbiota associated with breeding success, hormone metabolites and ovarian cycle phase in the critically endangered eastern black rhino, Microbiome 7, 1 (2019) [CrossRef] [PubMed] [Google Scholar]
  • A.C. Hughes, Understanding the drivers of Southeast Asian biodiversity loss, Ecosphere 8, 1 (2017) [PubMed] [Google Scholar]
  • Z. Zhou, Y. Liu, P. Shi, S. He, B. Yao, E. Ringø, Molecular characterization of the autochthonous microbiota in the gastrointestinal tract of adult yellow grouper (Epinephelus awoara) cultured in cages, Aquaculture 286, 3-4 (2009) [Google Scholar]
  • G.A. Camer, H. Park, R.B. Roque, J.S. Masangkay, Gastric Helicobacter species in Philippine dogs, Philipp. J. Vet. Med. 47, 1 (2010) [Google Scholar]
  • K. Ushida, R. Kock, M.A. Sundset, Wildlife microbiology, Microorganisms 9, 9 (2021) [Google Scholar]
  • J.A. Gilbert, J.K. Jansson, R. Knight, The Earth Microbiome project: successes and aspirations, BMC Biol. 12, 1-4 (2014) [Google Scholar]
  • G. Minard, F.H. Tran, V.T. Van, C. Goubert, C. Bellet, G. Lambert, C. Valiente Moro, French invasive Asian tiger mosquito populations harbor reduced bacterial microbiota and genetic diversity compared to Vietnamese autochthonous relatives, Front. Microbiol. 6, 970 (2015) [Google Scholar]
  • W. Surat, W. Mhuantong, D. Sangsrakru, T. Chareonviriyaphap, U. Arunyawat, A. Kubera, W. Pootakham, Gut bacterial diversity in Plasmodium-infected and Plasmodium-uninfected Anopheles minimus, Chiang Mai J. Sci 43, 427-440 (2016) [Google Scholar]
  • F. Rosso, V. Tagliapietra, D. Albanese, M. Pindo, F. Baldacchino, D. Arnoldi, A. Rizzoli, Reduced diversity of gut microbiota in two Aedes mosquitoes species in areas of recent invasion, Sci. Rep. 8, 1 (2018) [Google Scholar]
  • C.A. Lombogia, M. Tulung, J. Posangi, T.E. Tallei, Antibacterial activities of culture-dependent bacteria isolated from gut, The Open Microbiol. J. 14, 1 (2020) [Google Scholar]
  • B.T.T. Duong, N.T.K. Lien, H.T. Thu, N.T. Hoa, P.T. Lanh, B.R. Yun, D. Van Quyen, Investigation of the gut microbiome of Apis cerana honeybees from Vietnam, Biotechnol. Lett. 42, 2309-2317 (2020) [Google Scholar]
  • L. Gruneck, K. Khongphinitbunjong, S. Popluechai, Gut microbiota associated with two species of domesticated honey bees from Thailand, Symbiosis 83, 335-344 (2021) [Google Scholar]
  • P.T. Lanh, B.T.T. Duong, H.T. Thu, N.T. Hoa, M.S. Yoo, Y.S. Cho, D.V. Quyen, The gut microbiota at different developmental stages of Apis cerana reveals potential probiotic bacteria for improving honeybee health. Microorganisms, 10, 10 (2022) [Google Scholar]
  • V. Rombot, The Metagenomic Analysis of Potential Pathogenic Emerging Bacteria in Fleas, Pak. J. Biol. Sci. 24, 10 (2021) [Google Scholar]
  • A.S. Badrulisham, M.A.B Abdul-Latiff, B.M. Md-Zain, S. Md-Nor, M.R. Abd Rahman, N.S. Mohd-Yusof, S. Yaakop, Metabarcoding of Parasitic Wasp, Dolichogenidea metesae (Nixon)(Hymenoptera: Braconidae) That Parasitizing Bagworm, Metisa plana Walker (Lepidoptera: Psychidae), Trop. Life Sci. Res. 33, 1 (2022) [Google Scholar]
  • C.F. Simol, J.K. Chubo, P.J.H. King, K.H. Ong, C. Chew, K. Nawi, Qualitative and Molecular Screening of Potential Ligninolytic Microbes from Termite (Coptotermes curvignathus) Gut. Borneo J. Resour. Sci. Technol., 11, 1 (2021) [Google Scholar]
  • T. Ni’matuzahroh, S.N.M.M. Ibrahim, A.Z. Abidin, A.M. Khiftiyah, S.K. Sari, E.N. Nuswantara, Isolation and characterization of cockroach endosymbiont bacteria with potential to produce hydrolytic enzyme of organic material, Ecol. Environ. Conserv. 26 (2020) [Google Scholar]
  • R. Farah Nadiah, M.N. Norefrina Shafinaz, O. Nurul Wahida, Preliminary study of gut bacterial abundance in Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) fed on different diets, Serangga 23, 126-138 (2018) [Google Scholar]
  • K.C. Teo, S.M. Teoh, Preliminary biological screening of microbes isolated from cow dung in Kampar, Afr. J. Biotechnol. 10, 9 (2011) [Google Scholar]
  • M. Astriani, S. Zubaidah, A.L. Abadi, E. Suarsini, Isolation and identification of phosphate solubilizing bacteria from indigenous microorganisms (IMO) of cow rumen in East Java, Indonesia as eco-friendly biofertilizer, Malays. J. Microbiol. 16, 4 (2020) [Google Scholar]
  • B.P.T. Hang, E. Wredle, J. Dicksved, Analysis of the developing gut microbiota in young dairy calves—impact of colostrum microbiota and gut disturbances, Trop. Anim. Health Prod. 53, 1-8 (2021) [Google Scholar]
  • B.W.H.E. Prasetiyono, W. Widiyanto, N.S. Pandupuspitasari, Gut Microbiota Profiles in Dairy Cattle from Highland and Coastal Regions Using Shotgun Metagenomic Approach, Biomed. Res. Int. (2022) [Google Scholar]
  • H. Harsojo, S.Y. Sari, Bacterial Diversity in Buffalo Meat and Bowel from Traditional Market and the Sensitivity of Some Bacteria to Irradiation and Antibiotics, Atom Indones. 41, 2 (2015) [Google Scholar]
  • S. Agustina, K.G. Wiryawan, S. Suharti, A. Meryandini, The enrichment process and morphological identification of anaerobic fungi isolated from buffalo rumen, Biodiversitas J. Biol. Divers. 23, 1 (2022) [Google Scholar]
  • N. Pin Viso, E. Redondo, J.M. Diaz Carrasco, L. Redondo, J. Sabio y. Garcia, M. Fernández Miyakawa,, Geography as non-genetic modulation factor of chicken cecal microbiota, PLoS One 16, 1 (2021) [Google Scholar]
  • R. Susanti, A. Yuniastuti, F. Fibriana, Metagenome analysis of gut microbial in both the caged and non-caged ducks, J. Phys.: Conf. Ser. In IOP Publishing 1524, 1 (2020) [Google Scholar]
  • R. Susanti, N.R. Utami, A. Yuniastuti, Characterization of microbiota and secretory Ig-A in the domestic duck (Anas platyrhynchos) small and large intestine, Biodiversitas J. Biol. Divers. 24, 4 (2023) [Google Scholar]
  • T.T.B. Ngoc, NC. Oanh, T.T.T. Hong, P.K. Dang, Effects of dietary fiber sources on bacterial diversity in separate segments of the gastrointestinal tract of native and exotic pig breeds raised in Vietnam, Vet. World 14, 10 (2021) [Google Scholar]
  • M.R. Ingala, N.B. Simmons, C. Wultsch, K. Krampis, K.A. Speer, S.L. Perkins, Comparing microbiome sampling methods in a wild mammal: fecal and intestinal samples record different signals of host ecology, evolution, Front. Microbiol. 9, 803 (2018) [Google Scholar]
  • S. Menke, M. Meier, S. Sommer, Shifts in the gut microbiome observed in wildlife faecal samples exposed to natural weather conditions: Lessons from time‐series analyses using next‐generation sequencing for application in field studies, Methods Ecol. Evol. 6, 9 (2015) [Google Scholar]
  • M.A.B. Abdul-Latiff, N.R. Aifat, S. Yaakop, B.M. Md-Zain, A noninvasive molecular approach: exploiting species-locus-specific PCR primers in defeating numts and DNA cross-contamination of Cercopithecidae, JAPS J. Anim. Plant Sci. 27, 3 (2017) [Google Scholar]
  • A. Durbán, J.J. Abellán, N. Jiménez-Hernández, M. Ponce, J. Ponce, T. Sala, Assessing gut microbial diversity from feces and rectal mucosa, Microb. Ecol. 61, 123-133 (2011) [Google Scholar]
  • F. Araújo-Pérez, A.N. McCoy, C. Okechukwu, I.M. Carroll, K.M. Smith, K. Jeremiah, Differences in microbial signatures between rectal mucosal biopsies and rectal swabs, Gut Microbes 3, 6 (2012) [Google Scholar]
  • C.M. Bassis, N.M. Moore, K. Lolans, A.M. Seekatz, R.A. Weinstein, V.B. Young, CDC Prevention Epicenters Program. Comparison of stool versus rectal swab samples and storage conditions on bacterial community profiles, BMC Microbiol. 17, 1-7 (2017) [CrossRef] [Google Scholar]
  • M. Wanapat, K. Boonnop, C. Promkot, and A. Cherdthong, Effects of alternative protein sources on rumen microbes and productivity of dairy cows, Maejo Int. J. Sci. Technol. 5(1), 13 (2011) [Google Scholar]
  • R.S. Peixoto, D.M. Harkins, K.E. Nelson, Advances in microbiome research for animal health, Annu. Rev. Anim. Biosci. 9, 289-311 (2021) [CrossRef] [PubMed] [Google Scholar]
  • R. Franco-Duarte, L. Černáková, S. Kadam, S. Kaushik, B. Salehi, A. Bevilacqua, Advances in chemical and biological methods to identify microorganisms—from past to present, Microorganisms 7, 5 (2019) [Google Scholar]
  • S. Suharti, N. Novrariani, K.G. Wiryawan, Morphological, biochemical, and molecular identification of cellulolytic bacteria isolated from feces of endemic tropical herbivores, Biodiversitas J. Biol. Divers. 24, 7 (2023) [CrossRef] [Google Scholar]
  • L.B. Reller, M.P. Weinstein, C.A. Petti, Detection and identification of microorganisms by gene amplification and sequencing, Clin. Infect. Dis. 44, 8 (2007) [Google Scholar]
  • S. Hameed, L. Xie, Y. Ying, Conventional and Emerging Detection Techniques for Pathogenic Bacteria in Food Science: A Review, Trends Food Sci. Technol. (2018) [Google Scholar]
  • K.R. Kamarudin, M.M. Rehan, Gram-positive bacteria with commercial potential from the gastrointestines of Holothuria (Mertensiothuria) leucospilota (Timun Laut) and Stichopus horrens (Gamat) from Malaysian Waters, Pertanika J. Trop. Agric. Sci. (2018) [Google Scholar]
  • T.T.T. Hoa, T. Nakayama, H.M. Huyen, K. Harada, A. Hinenoya, N.T. Phuong, Y. Yamamoto, Extended‐spectrum beta‐lactamase‐producing Escherichia coli harbouring sul and mcr‐1 genes isolates from fish gut contents in the Mekong Delta, Vietnam, Lett. Appl. Microbiol. 71, 1 (2020) [Google Scholar]
  • B.E. Knudsen, L. Bergmark, P. Munk, O. Lukjancenko, A. Priemé, F.M. Aarestrup, S.J. Pamp, Impact of sample type and DNA isolation procedure on genomic inference of microbiome composition, mSystems 1, 5 (2016) [Google Scholar]
  • J.A. Mabuhay-Omar, G.D.B. Cayabo, I.J.P. Nuñala, S.E. Habal, L.A. Creencia, Microbial and microparasite abundance in cage-cultured abalone Haliotis asinina, J. Shellfish Res. 38, 2 (2019) [Google Scholar]
  • M.Y. Choo, M.F. Yusof, S.S. Kamal, D.S. Nielsen, H.F. Ahmad, High-throughput amplicon sequencing of gut microbiome sea cucumber in Pahang, Malaysia, AIP Conf. Proc. 2682, 1 (2023) [Google Scholar]
  • S.S. Wei, C.M. Yen, I.P. Marshall, H. Abd Hamid, S.S. Kamal, D.S. Nielsen, H.F. Ahmad, Gut microbiome and metabolome of sea cucumber (Stichopus ocellatus) as putative markers for monitoring marine sediment pollution in Pahang, Malaysia, Mar. Pollut. Bull. 182, 114022 (2022) [Google Scholar]
  • H. Saadu, J. Sutra, A.M. Hashim, A. Ismail, S.Z. Zulkifli, M.N.A. Amal, Diversity, Composition, Taxa Biomarkers, and Functional Genes of Fish Gut Microbes in Peat Swamp Forests and its Converted Areas in North Selangor, Malaysia, Pertanika J. Trop. Agric. Sci. 44, 3 (2021) [Google Scholar]
  • M.H.M. Salleh, Y. Esa, M.S. Ngalimat, P.N. Chen, Faecal DNA metabarcoding reveals novel bacterial community patterns of critically endangered Southern River Terrapin, Batagur affinis, PeerJ 10, e12970 (2022) [CrossRef] [PubMed] [Google Scholar]
  • M. Khairulmunir, M. Gani, K.V. Karuppannan, B.M. Md-Zain, High-throughput DNA metabarcoding for determining the gut microbiome of captive critically endangered Malayan tiger (Panthera tigris jacksoni) during fasting, Biodivers. Data J. 11 (2023) [Google Scholar]
  • N.S. Mohd-Yusof, M.A.B. Abdul-Latiff, A.S. Badrulisham, N. Othman, S. Yaakop, S. Md-Nor, B.M. Md-Zain, First report on metabarcoding analysis of gut microbiome in Island Flying Fox (Pteropus hypomelanus) in island populations of Malaysia, Biodivers. Data J. 10 (2022) [Google Scholar]
  • C.W. Chong, A.H.S. Alkatheeri, N. Ali, Z.H. Tay, Y.L. Lee, S.J. Paramasivam, Association of antimicrobial resistance and gut microbiota composition in human and non-human primates at an urban ecotourism site, Gut Pathog. 12, 1-12 (2020) [Google Scholar]
  • D.S. Daniel, Y.K. Ng, E.L. Chua, Y. Arumugam, W.L. Wong, J.V. Kumaran, Isolation and identification of gastrointestinal microbiota from the short-nosed fruit bat Cynopterus brachyotis brachyotis, Microbiol. Res. 168, 8 (2013) [Google Scholar]
  • J. Tahulending, M. Tulung, J. Pelealu, D.V. Doda, Molecular detection of pathogenic bacteria in Rhipicephalus sanguineus (sensu lato) ticks from Bitung, North Sulawesi, Indonesia, Biodiversitas J. Biol. Divers. 23, 12 (2022) [Google Scholar]
  • Y.C. Chen, N.L. Tao, S.Y. Hu, H.Y. Tsai, S.C. Liao, W.L. Tsai, C.Y. Hu, Effect of tempeh on gut microbiota and anti-stress activity in Zebrafish, Int. J. Mol. Sci. 22, 23 (2021) [Google Scholar]
  • R.L. Joakim, M. Irham, T. Haryoko, K.M. Rowe, Y. Dalimunthe, S. Anita, Geography and elevation as drivers of cloacal microbiome assemblages of a passerine bird distributed across Sulawesi, Indonesia, Animal Microbiome 5, 1 (2023) [CrossRef] [PubMed] [Google Scholar]
  • A. Indrawati, S. Safika, S. Ningrum, K. Aulia, H. Maheshwari, S. Andriyono, Fecal and gastric fluid microbiome profiles in the Indo-Pacific bottlenose dolphins (Tursiops aduncus), J. Vet. Sci. 37, 1 (2023) [Google Scholar]
  • D. Le, P. Nguyen, D. Nguyen, K. Dierckens, N. Boon, T. Lacoere, Gut microbiota of migrating wild rabbit fish (Siganus guttatus) larvae have low spatial and temporal variability, Microb. Ecol. 79, 539-551 (2020) [Google Scholar]
  • X.Z. Chew, S. Gibson-Kueh, D.R. Jerry, X. Shen, Comparison of intestinal bacterial communities in asymptomatic and diseased Asian seabass (Lates calcarifer) with chronic enteritis and mixed bacterial infections, Aquaculture 572, 739516 (2023) [CrossRef] [Google Scholar]
  • V.L. Hale, C.L. Tan, K. Niu, Y. Yang, R. Knight, Q. Zhang, Diet versus phylogeny: a comparison of gut microbiota in captive colobine monkey species, Microb. Ecol. 75, 515-527 (2018) [Google Scholar]
  • N. Gunathilaka, K. Ranasinghe, D. Amarasinghe, W. Rodrigo, H. Mallawarachchi, N. Chandrasena, Molecular characterization of culturable aerobic bacteria in the midgut of field-caught Culex tritaeniorhynchus, Culex gelidus, and Mansonia annulifera mosquitoes in the Gampaha district of Sri Lanka, BioMed Res. Int. (2020) [Google Scholar]
  • K. Ranasinghe, N. Gunathilaka, D. Amarasinghe, W. Rodrigo, L. Udayanga, Diversity of midgut bacteria in larvae and females of Aedes aegypti and Aedes albopictus from Gampaha District, Sri Lanka, Parasites & Vectors 14, 1 (2021) [CrossRef] [PubMed] [Google Scholar]
  • K.R. Amato, S. Kuthyar, M. Ekanayake-Weber, R. Salmi, N. Snyder-Mackler, L. Wijayathunga, Gut microbiome, diet, and conservation of endangered langurs in Sri Lanka, Biotropica 52, 5 (2020) [Google Scholar]
  • V. Mathipi, S.D. Mandal, Z. Chawngthu, R. Lalfelpuii, N.S. Kumar, H. Lalthanzara, Diversity and metabolic potential of earthworm gut microbiota in Indo-Myanmar biodiversity hotspot, J. Pure Appl. Microbiol. 14, 2 (2020) [Google Scholar]
  • A. Ngamniyom, T. Sriyapai, P. Sriyapai, B. Panyarachun, Diversity of gut microbes in freshwater and brackish water ricefish (Oryzias minutillus and O. javanicus) from Southern Thailand, Agric. Nat. Resour. 55, 2 (2021) [Google Scholar]
  • V. Sawaswong, P. Chanchaem, T. Kemthong, S. Warit, A. Chaiprasert, S. Malaivijitnond, Alteration of gut microbiota in wild-borne long-tailed macaques after 1-year being housed in hygienic captivity, Sci. Rep. 13, 1 (2023) [CrossRef] [Google Scholar]
  • V. Sawaswong, K. Praianantathavorn, P. Chanchaem, A. Khamwut, T. Kemthong, Y. Hamada, Comparative analysis of oral-gut microbiota between captive and wild long-tailed macaque in Thailand, Sci. Rep. 11, 1 (2021) [NASA ADS] [CrossRef] [Google Scholar]
  • V. Sawaswong, P. Chanchaem, A. Khamwut, K. Praianantathavorn, T. Kemthong, S. Malaivijitnond, Oral-fecal mycobiome in wild and captive cynomolgus macaques (Macaca fascicularis), Fungal Genet. Biol. 144, 103468 (2020) [Google Scholar]
  • C.J.D. Rosa, W. Rivera, Identification of Bacteroides spp. From ducks using 16S rRNA Gene Pcr Assay: Prelude to its Application in Microbial Source Tracking, J. Microbiol. Biotechnol. Food Sci. 11, 3 (2021). [Google Scholar]
  • S.J. Eliades, T.J. Colston, C.D. Siler, Gut microbial ecology of Philippine gekkonids: ecoevolutionary effects on microbiome compositions, FEMS Microbiol. Ecol. 98, 12 (2022) [Google Scholar]
  • S.N. Smith, T.J. Colston, C.D. Siler, Venomous snakes reveal ecological and phylogenetic factors influencing variation in gut and oral microbiomes, Front. Microbiol. 12, 657754 (2021) [Google Scholar]
  • N.J. Ames, A. Ranucci, B. Moriyama, G.R. Wallen, The Human Microbiome and Understanding the 16S rRNA Gene in Translational Nursing Science, Nurs. Res. 66, 2 (2017) [Google Scholar]
  • N.S. Muhamad Rizal, H.M. Neoh, R. Ramli, K. Periyasamy, A. Hanafiah, M.N. Abdul Samat, Advantages and Limitations of 16S rRNA Next-Generation Sequencing for Pathogen Identification in the Diagnostic Microbiology Laboratory: Perspectives from a Middle-Income Country, Diagnostics 10, 10 (2020) [Google Scholar]
  • G.C. Baker, J.J. Smith, D.A. Cowan, Review and re-analysis of domain-specific 16S primers, J. Microbiol. Methods 55, 3 (2003) [Google Scholar]
  • R. Rosselli, O. Romoli, N. Vitulo, A. Vezzi, S. Campanaro, F. de Pascale, Direct 16S rRNA-seq from bacterial communities: a PCR-independent approach to simultaneously assess microbial diversity and functional activity potential of each taxon, Sci. Rep. 6, 1 (2016) [CrossRef] [Google Scholar]
  • Y.S. Bukin, Y.P. Galachyants, I.V. Morozov, S.V. Bukin, A.S. Zakharenko, T.I. Zemskaya, The effect of 16S rRNA region choice on bacterial community metabarcoding results, Sci. Data 6, 1 (2019) [Google Scholar]
  • A. Rintala, S. Pietilä, E. Munukka, E. Eerola, J.P. Pursiheimo, A. Laiho, Gut microbiota analysis results are highly dependent on the 16S rRNA gene target region, whereas the impact of DNA extraction is minor, J. Biomol. Tech. 28, 1 (2017) [Google Scholar]
  • N. Othman, H. Haris, Z. Fatin, M.F. Najmuddin, N.H. Sariyati, B.M. Md-Zain, M.A.B. Abdul-Latiff, A review on environmental DNA (eDNA) metabarcoding markers for wildlife monitoring research, IOP Conf. Ser. Earth Environ. Sci. In IOP Publishing 736, 1 (2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.