Open Access
BIO Web Conf.
Volume 94, 2024
The 8th International Conference on Biological Sciences “Leveraging Biodiversity to Support Green Economy and Climate Resilience” (ICBS 2023)
Article Number 04022
Number of page(s) 10
Section Biosystematics, Ecology, and Evolution
Published online 25 March 2024
  • H.Y.S.H. Nugroho, F. Nurfatriani, Y. Indrajaya, T.W. Yuwanti, et al., Mainstreaming Ecosystem Services from Indonesia’s Remaining Forests. Sustainability, 14, 12124 (2022) [Google Scholar]
  • T.W. Yuwati, D. Rachmanadi, M.A. Qirom., et al., The performance of paludiculture commodities at different peat depths in Central Kalimantan, in Proceedings of the INAFOR 2021 Stream 2, Bogor, Indonesia, September 7-8 (2021), 012047 [Google Scholar]
  • M. Turjaman, N. Herdyantara, S.A. Faulina, et al., Mycorrhizal colonization of indigenous tropical tree species grown in peat swamp forests of Sumatera, Indonesia, in Proceedings of the IS BIOREV 2018, Bogor, Indonesia, September 27-28 (2018), 012049 [Google Scholar]
  • K. Tawaraya, Y. Takaya, M. Turjaman, et al., Arbuscular mycorrhizal colonization of tree species grown in peat swamp forests of Central Kalimantan, Indonesia. For. Ecol. Manage. 182, 381–386 (2003) [Google Scholar]
  • Helbert, M. Turjaman, K. Nara, Ectomycorrhizal fungal communities of secondary tropical forests dominated by Tristaniopsis in Bangka Island, Indonesia, PLoS One, 14, e0221998 (2019) [CrossRef] [Google Scholar]
  • D. Janowski and T. Leski, Factors in the Distribution of Mycorrhizal and Soil Fungi, Diversity, 14, 1122 (2022) [CrossRef] [Google Scholar]
  • M. Turjaman, E. Santoso, A. Susanto., et al., Ectomycorrhizal fungi promote growth of Shorea balangeran in degraded peat swamp forests, Wetl. Ecol. Manag., 19, 331–339 (2011) [Google Scholar]
  • L. L. B. Graham, M. Turjaman, and S. E. Page, Shorea balangeran and Dyera polyphylla (syn. Dyera lowii) as tropical peat swamp forest restoration transplant species: Effects of mycorrhizae and level of disturbance, Wetl. Ecol. Manag., 21, 307–321 (2013) [Google Scholar]
  • C. Phosri, S. Põlme, A. F. S. Taylor, U. Kõljalg, N. Suwannasai, and L. Tedersoo, Diversity and community composition of ectomycorrhizal fungi in a dry deciduous dipterocarp forest in Thailand, Biodivers. Conserv., 21, 2287–2298 (2012) [Google Scholar]
  • E. Stenström, The effects of flooding on the formation of ectomycorrhizae in Pinus sylvestris seedlings, Plant Soil, 131, 247–250 (1991) [Google Scholar]
  • T. Yamanaka, The effect of pH on the growth of saprotrophic and ectomycorrhizal ammonia fungi in vitro, Mycologia, 95, 584–589 (2003) [Google Scholar]
  • S. K. Sundari and A. Adholeya, Growth profile of ectomycorrhizal fungal mycelium: emphasis on substrate pH influence, Antonie Van Leeuwenhoek, 83, 209–214 (2003) [CrossRef] [Google Scholar]
  • R. An, Y. Jia., B. Wan., et al., Non-Enzymatic Depurination of Nucleic Acids: Factors and Mechanisms, PLoS One 9, e115950 (2014) [Google Scholar]
  • M. Gardes and T. D. Bruns, Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above- and below-ground views, Can. J. Bot., 74, 1572–1583 (1996) [CrossRef] [Google Scholar]
  • L. Jonsson, A. Dahlberg, M. C. Nilsson, O. Zackrisson, and O. Karen, Ectomycorrhizal fungal communities in late-successional Swedish boreal forests, and their composition following wildfire, Mol. Ecol. 8, 205–215 (1999) [Google Scholar]
  • L. Tedersoo, T. Suvi, E. Larsson, and U. Koljalg, Diversity and community structure of ectomycorrhizal fungi in a wooded meadow, Mycol. Res. 110, 734–748 (2006) [Google Scholar]
  • T. R. Horton and T. D. Bruns, Multiple-host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas fir (Pseudotsuga menziesii) and bishop pine (Pinus muricata), New Phytol. 139, 331–339 (1998) [Google Scholar]
  • G. W. Douhan, L. Vincenot, H. Gryta, and M.-A. Selosse, Population genetics of ectomycorrhizal fungi: from current knowledge to emerging directions, Fungal Biol., 115, 569–597 (2011) [Google Scholar]
  • K. Nara, H. Nakaya, B. Wu, Z. Zhou, and T. Hogetsu, Underground primary succession of ectomycorrhizal fungi in a volcanic desert on Mount Fuji, New Phytol., 159, 743–756 (2003) [Google Scholar]
  • L. Tedersoo and K. Nara, General latitudinal gradient of biodiversity is reversed in ectomycorrhizal fungi, New Phytol. 185, 351–354 (2010) [Google Scholar]
  • Y. Liu, X. Li, and Y. Kou, Ectomycorrhizal Fungi: Participation in Nutrient Turnover and Community Assembly Pattern in Forest Ecosystems, Forests 11, 453 (2020) [Google Scholar]
  • S. S. Lee, B. K. Thi, and P. Mansor, An Ectomycorrhizal Thelephoroid Fungus of Malaysian Dipterocapr Seedlings, J. Trop. For. Sci. 22, 355–363 (2010) [Google Scholar]
  • S.-R. Yang, Y.-L. Wei, and H.-S. Yuan, Molecular phylogeny and morphology reveal four new species of Thelephora (Thelephorales, Basidiomycota) from subtropical China, closely related to T. ganbajun, Front. Microbiol., 14, 1109924 (2023) [Google Scholar]
  • M. Ulfa, E. Faridah, S.S. Lee. et al., Multi Inang Fungi Ektomikoriza pada Dipterocarpaceae di Hutan Tropis, J. Ilmu Kehutan., 13, 56–69 (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.