Open Access
Issue
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
Article Number 00004
Number of page(s) 14
DOI https://doi.org/10.1051/bioconf/20249700004
Published online 05 April 2024
  • A. Rghioui and A. Oumnad, “Challenges and opportunities of internet of things in healthcare,” International Journal of Electrical and Computer Engineering, vol. 8, no. 5, pp. 2753–2761, 2018, DOI: 10.11591/ijece.v8i5.pp2753-2761. [Google Scholar]
  • A. Sarmah, K. K. Baruah, and A. J. Baruah, “A brief review on Internet of Things,” International Research Journal ofEngineering and Technology (IRJET), vol. 4, no. 10, pp. 1–5, 2017. [Google Scholar]
  • K. Patel and Keyur, “Internet of Things-IOT: Definition, Characteristics, Architecture, Enabling Technologies, Application & Future Challenges.,” Universidad Iberoamericana Ciudad de México, no. May, p. 6123, 6131, 2016. [Google Scholar]
  • J. Illegems, “The Internet of things in health care,” Universiteit Gent: Master thesis Ismail, S. and Y. van Geest (2015). Exponentiële organisaties. Waarom nieuwe organisaties tien keer beter, sneller en goedkoper zijn-en hoe jij dat ook wordt. Amsterdam: Business Contact, 2017. [Google Scholar]
  • S. U. Amin and M. S. Hossain, “Edge intelligence and internet of things in healthcare: a survey,” IEEE Access, vol. 9, pp. 45–59, 2020. [Google Scholar]
  • S. Alasmari and M. Anwar, “Security & privacy challenges in IoT-based health cloud,” in 2016 International Conference on Computational Science and Computational Intelligence (CSCI), IEEE, 2016, pp. 198–201. [CrossRef] [Google Scholar]
  • Samsung, “6G: The Next Hyper-Connected Experience for All.” 2020. [Google Scholar]
  • S. K. Dhar, S. S. Bhunia, and N. Mukherjee, “Interference aware scheduling of sensors in IoT enabled health-care monitoring system,” Proceedings - 4th International Conference on Emerging Applications of Information Technology, EAIT 2014, no. September 2015, pp. 152–157, 2014, DOI: 10.1109/EAIT.2014.50. [CrossRef] [Google Scholar]
  • G. Villarrubia, J. Bajo, J. F. De Paz, and J. M. Corchado, “Monitoring and detection platform to prevent anomalous situations in home care,” Sensors, vol. 14, no. 6, pp. 9900–9921, 2014. [CrossRef] [PubMed] [Google Scholar]
  • B. S. Babu, K. Srikanth, T. Ramanjaneyulu, and I. L. Narayana, “IoT for healthcare,” International Journal of Science and Research, vol. 5, no. 2, pp. 322–326, 2016. [Google Scholar]
  • A. Kaur and A. Jasuja, “Health monitoring based on IoT using Raspberry PI,” in 2017 International conference on computing, communication and automation (ICCCA), IEEE, 2017, pp. 1335–1340. [CrossRef] [Google Scholar]
  • M. Pham, Y. Mengistu, H. Do, and W. Sheng, “Delivering home healthcare through a cloud-based smart home environment (CoSHE),” Future Generation Computer Systems, vol. 81, pp. 129–140, 2018. [CrossRef] [Google Scholar]
  • M. M. Dhanvijay and S. C. Patil, “Internet of Things: A survey of enabling technologies in healthcare and its applications,” Computer Networks, vol. 153, pp. 113–131, 2019. [CrossRef] [Google Scholar]
  • D. Choi, H. Choi, and D. Shon, “Future changes to smart home based on AAL healthcare service,” Journal of Asian Architecture and Building Engineering, vol. 18, no. 3, pp. 190–199, 2019. [CrossRef] [Google Scholar]
  • S. S. Raykar and V. N. Shet, “Design of healthcare system using IoT enabled application,” Mater Today Proc, vol. 23, pp. 62–67, 2020. [CrossRef] [Google Scholar]
  • Y. Zhang, H. Liu, X. Su, P. Jiang, and D. Wei, “Remote mobile health monitoring system based on smart phone and browser/server structure,” J Healthc Eng, vol. 6, no. 4, pp. 717–738, 2015. [CrossRef] [PubMed] [Google Scholar]
  • J. Gómez, B. Oviedo, and E. Zhuma, “Patient monitoring system based on internet of things,” Procedia Comput Sci, vol. 83, pp. 90–97, 2016. [CrossRef] [Google Scholar]
  • M. Pustiek, A. Beristain, and A. Kos, “Challenges in wearable devices based pervasive wellbeing monitoring,” in 2015 international conference on Identification, Information, and Knowledge in the Internet of Things (IIKI), IEEE, 2015, pp. 236–243. [CrossRef] [Google Scholar]
  • H. T. Cheng and W. Zhuang, “Bluetooth-enabled in-home patient monitoring system: Early detection of Alzheimer’s disease,” IEEE Wirel Commun, vol. 17, no. 1, pp. 74–79, 2010. [CrossRef] [Google Scholar]
  • R. S. Dilmaghani, H. Bobarshad, M. Ghavami, S. Choobkar, and C. Wolfe, “Wireless sensor networks for monitoring physiological signals of multiple patients,” IEEE Trans Biomed Circuits Syst, vol. 5, no. 4, pp. 347356, 2011. [CrossRef] [PubMed] [Google Scholar]
  • G. Haché, E. D. Lemaire, and N. Baddour, “Wearable mobility monitoring using a multimedia smartphone platform,” IEEE Trans Instrum Meas, vol. 60, no. 9, pp. 3153–3161, 2011. [CrossRef] [Google Scholar]
  • S. Baker and W. Xiang, “Artificial Intelligence of Things for Smarter Healthcare: A Survey of Advancements, Challenges, and Opportunities,” IEEE Communications Surveys & Tutorials, 2023. [Google Scholar]
  • T. K. Gannavaram, U. M. Kandhikonda, R. Bejgam, S. B. Keshipeddi, and S. Sunkari, “A brief review on internet of things (IoT),” 2021 International Conference on Computer Communication and Informatics, ICCCI 2021, vol. 2021-Janua, 2021, DOI: 10.1109/ICCCI50826.2021.9451163. [Google Scholar]
  • P. Singh, “Internet of things based health monitoring system: opportunities and challenges,” International Journal of Advanced Research in Computer Science, vol. 9, no. 1, pp. 224–228, 2018. [CrossRef] [Google Scholar]
  • B. V. R. Krishna, L. L. S. Maneesha, and A. Ramadevi, “An RFID based COVID Patient Health Care Monitoring System for Government Hospitals,” Journal homepage: www.ijrpr.com ISSN, vol. 2582, p. 7421. [Google Scholar]
  • İ. Avci and Y. H. Dakhil, “Survey About Green IoT: Applications, Technologies, Challenges, and Future Directions,” in 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), IEEE, 2022, pp. 1–7. [Google Scholar]
  • “General Information on the main benefits IOT healthcare, The infisim,” www.infisim.com/main-benefits-iot-healthcare. [Google Scholar]
  • “General Information on the IOT healthcare advantages-disadvantages, The iotforall,” www.iotforall.com/iot-healthcare-advantages-disadvantages. [Google Scholar]
  • S. Neelam, “Internet of Things in Healthcare.” 2017. [Google Scholar]
  • S. M. R. Islam, D. Kwak, M. D. H. Kabir, M. Hossain, and K.-S. Kwak, “The internet of things for health care: a comprehensive survey,” IEEE access, vol. 3, pp. 678–708, 2015. [CrossRef] [Google Scholar]
  • N. Khatoon, S. Roy, and P. Pranav, “A survey on Applications of Internet of Things in Healthcare,” Internet of Things and Big Data Applications: Recent Advances and Challenges, pp. 89–106, 2020. [Google Scholar]
  • I. Sadek, S. U. Rehman, J. Codjo, and B. Abdulrazak, “Privacy and security of IoT based healthcare systems: concerns, solutions, and recommendations,” in How AI Impacts Urban Living and Public Health: 17th International Conference, ICOST 2019, New York City, NY, USA, October 14-16, 2019, Proceedings 17, Springer International Publishing, 2019, pp. 3–17. [Google Scholar]
  • Z. N. Aghdam, A. M. Rahmani, and M. Hosseinzadeh, “The role of the Internet of Things in healthcare: Future trends and challenges,” Comput Methods Programs Biomed, vol. 199, p. 105903, 2021. [CrossRef] [PubMed] [Google Scholar]
  • D. C. Nguyen et al., “6G Internet of Things: A comprehensive survey,” IEEE Internet Things J., vol. 9, no. 1, pp. 359–383, 2021. [Google Scholar]
  • K. E. Georgiou, E. Georgiou, and R. M. Satava, “5G Use in Healthcare: The Future is Present,” JSLS: Journal of the Society of Laparoscopic & Robotic Surgeons, vol. 25, no. 4, 2021. [Google Scholar]
  • A. Nordrum and K. Clark, “5G bytes: Small cells explained,” IEEE Spectrum: New York, NY, USA, 2017. [Google Scholar]
  • A. Jell et al., “5th-Generation Mobile Communication: Data Highway for Surgery 4.0.,” Surg Technol Int, vol. 35, pp. 36–42, 2019. [PubMed] [Google Scholar]
  • R. D. Madder et al., “Robotic telestenting performance in transcontinental and regional pre-clinical models,” Catheterization and Cardiovascular Interventions, vol. 97, no. 3, pp. E327–E332, 2021. [CrossRef] [PubMed] [Google Scholar]
  • A. Angelucci, D. Kuller, and A. Aliverti, “A home telemedicine system for continuous respiratory monitoring,” IEEE J Biomed Health Inform, vol. 25, no. 4, pp. 1247–1256, 2020. [Google Scholar]
  • A. M. Lacy et al., “5G-assisted telementored surgery,” British Journal of Surgery, vol. 106, no. 12, pp. 1576–1579, 2019. [CrossRef] [PubMed] [Google Scholar]
  • Z. Hong et al., “Telemedicine during the COVID-19 pandemic: experiences from Western China,” J Med Internet Res, vol. 22, no. 5, p. e19577, 2020. [CrossRef] [PubMed] [Google Scholar]
  • B. Zhou, Q. Wu, X. Zhao, W. Zhang, W. Wu, and Z. Guo, “Construction of 5G all-wireless network and information system for cabin hospitals,” Journal of the American Medical Informatics Association, vol. 27, no. 6, pp. 934–938, 2020. [CrossRef] [PubMed] [Google Scholar]
  • J.-P. O. Li et al., “Digital technology, tele-medicine and artificial intelligence in ophthalmology: A global perspective,” Prog Retin Eye Res, vol. 82, p. 100900, 2021. [CrossRef] [PubMed] [Google Scholar]
  • Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new perspectives,” IEEE Trans Pattern Anal Mach Intell, vol. 35, no. 8, pp. 1798–1828, 2013. [CrossRef] [PubMed] [Google Scholar]
  • Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015. [CrossRef] [Google Scholar]
  • F. K. Al-Shammri, A. S. Mohammed, and F. V. Çelebı, “A Combined Method for Object Detection under Rain Conditions Using Deep Learning,” in 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), IEEE, 2022, pp. 1–8. [Google Scholar]
  • J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural networks, vol. 61, pp. 85–117, 2015. [CrossRef] [PubMed] [Google Scholar]
  • P. Lakhani and B. Sundaram, “Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks,” Radiology, vol. 284, no. 2, pp. 574–582, 2017. [CrossRef] [Google Scholar]
  • F. A. Medeiros, A. A. Jammal, and A. C. Thompson, “From machine to machine: an OCT-trained deep learning algorithm for objective quantification of glaucomatous damage in fundus photographs,” Ophthalmology, vol. 126, no. 4, pp. 513–521, 2019. [CrossRef] [PubMed] [Google Scholar]
  • E. Esenogho, K. Djouani, and A. Kurien, “Integrating Artificial Intelligence Internet of Things and 5G for NextGeneration Smartgrid: A Survey of Trends Challenges and Prospect.,” IEEE Access, 2022. [Google Scholar]
  • R. Priyadarshini, R. K. Barik, and H. Dubey, “DeepFog: Fog computing-based deep neural architecture for prediction of stress types, diabetes and hypertension attacks,” Computation, vol. 6, no. 4, p. 62, 2018. [CrossRef] [Google Scholar]
  • M. Abdel-Basset, G. Manogaran, A. Gamal, and V. Chang, “A novel intelligent medical decision support model based on soft computing and IoT,” IEEE Internet Things J., vol. 7, no. 5, pp. 4160–4170, 2019. [Google Scholar]
  • N. Mathur, G. Paul, J. Irvine, M. Abuhelala, A. Buis, and I. Glesk, “A practical design and implementation of a low cost platform for remote monitoring of lower limb health of amputees in the developing world,” IEEE Access, vol. 4, pp. 7440–7451, 2016. [CrossRef] [Google Scholar]
  • J. P. Queralta, T. N. Gia, H. Tenhunen, and T. Westerlund, “Edge-AI in LoRa-based health monitoring: Fall detection system with fog computing and LSTM recurrent neural networks,” in 2019 42nd international conference on telecommunications and signal processing (TSP), IEEE, 2019, pp. 601–604. [CrossRef] [Google Scholar]
  • M. Z. Uddin, “A wearable sensor-based activity prediction system to facilitate edge computing in smart healthcare system,” J Parallel Distrib Comput, vol. 123, pp. 46–53, 2019. [CrossRef] [Google Scholar]
  • M. V. S. Reddy, R. S. Prasad, R. S. Jagan, and M. Selvi, “Artificial intelligence for IoT-based Healthcare System,” in 2023 International Conference on Computer Communication and Informatics (ICCCI), IEEE, 2023, pp. 1–5. [Google Scholar]
  • M. G. S. Murshed, C. Murphy, D. Hou, N. Khan, G. Ananthanarayanan, and F. Hussain, “Machine learning at the network edge: A survey,” ACM Computing Surveys (CSUR), vol. 54, no. 8, pp. 1–37, 2021. [CrossRef] [Google Scholar]
  • A. F. Markus, J. A. Kors, and P. R. Rijnbeek, “The role of explainability in creating trustworthy artificial intelligence for health care: a comprehensive survey of the terminology, design choices, and evaluation strategies,” J Biomed Inform, vol. 113, p. 103655, 2021. [CrossRef] [PubMed] [Google Scholar]
  • M. N. Bhuiyan, M. M. Rahman, M. M. Billah, and D. Saha, “Internet of things (IoT): A review of its enabling technologies in healthcare applications, standards protocols, security, and market opportunities,” IEEE Internet Things J., vol. 8, no. 13, pp. 10474–10498, 2021. [CrossRef] [Google Scholar]
  • F. Subhan et al., “AI-enabled wearable medical internet of things in healthcare system: A survey,” Applied Sciences, vol. 13, no. 3, p. 1394, 2023. [CrossRef] [Google Scholar]
  • V. A. Dang, Q. Vu Khanh, V.-H. Nguyen, T. Nguyen, and D. C. Nguyen, “Intelligent Healthcare: Integration of Emerging Technologies and Internet of Things for Humanity,” Sensors, vol. 23, no. 9, p. 4200, 2023. [CrossRef] [PubMed] [Google Scholar]
  • T. Shaik et al., “Remote patient monitoring using artificial intelligence: Current state, applications, and challenges,” Wiley Interdiscip Rev Data Min Knowl Discov, vol. 13, no. 2, p. e1485, 2023. [CrossRef] [Google Scholar]
  • G. Wu, D. Zeng, R. Chen, D. M. Zhao, D. Ge, and X. Chen, “Using deep learning technology for healthcare applications in internet of things sensor monitoring system,” J Mech Med Biol, p. 2340013, 2023. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.