Open Access
Issue
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
Article Number 00014
Number of page(s) 20
DOI https://doi.org/10.1051/bioconf/20249700014
Published online 05 April 2024
  • Gao, Fei and You, Jialing and Wang, Jun and Sun, Jinping and Yang, Erfu and Zhou, A novel target detection method for SAR Images Based on shadow proposal and Saliency analysis2017Neurocomputing267220--231 [Google Scholar]
  • Guanqiu Qi, Liang changA, precise multi-exposure image fusion method based on low- level features2020Sensors201597 [Google Scholar]
  • Kiran Maharana, Surajit Mondal, Bhushankumar Nemade, A review: Data preprocessing and data augmentation techniques2022Global Transitions Proceedings. [Google Scholar]
  • Satyabrata Aich, Jinyoung Youn, Sabyasachi Chakraborty, Pyari Mohan Pradhan, Jin-Han Park, Seongho Park, Jinse Park, A supervised machine learning approach to detect the on/off state in Parkinson’s disease using wearable-based gait signals2020Diagnostics10421 [Google Scholar]
  • Mauro Medeiros Barbat, Adriano Velasque Werhli, An adaptive machine learning approach to improve automatic iceberg detection from SAR images2019ISPRS Journal of Photogrammetry and Remote Sensing156247--259 [Google Scholar]
  • Raju Vaishya, Mohd Javaid, Ibrahim Haleem Khan, Abid Haleem, Artificial Intelligence (AI) applications for COVID-19 pandemic2020Diabetes \& Metabolic Syndrome: Clinical Research \& Reviews144337--339 [Google Scholar]
  • Ahmad Alimadadi, Sachin Aryal, Ishan Manandhar, Patricia B. Munroe, Bina Joe, Xi Cheng, Artificial intelligence and machine learning to fight COVID- 192020Physiological genomics524200--202 [Google Scholar]
  • Udaysankar Chockanathan, Adora M. DSouza, Anas Z. Abidin, Giovanni Schifitto, Axel Wismüller, Automated diagnosis of HIV-associated neurocognitive disorders using large-scale Granger causality analysis of resting-state functional MRI2019Computers in biology and medicine10624--30. [Google Scholar]
  • Xingchen Zhang, Benchmarking and comparing multi-exposure image fusion algorithms2021Information Fusion74111-131. [Google Scholar]
  • Ronghuashang, Liping Qi, Licheng Jiao, Rustam Stolkin, Yangyang Li, Change detection in SAR images by artificial immune multi-objective clustering2014Engineering Applications of Artificial Intelligence3153-67 [Google Scholar]
  • Francesca De Felis, Polimeni, Coronavirus disease (COVID-19): a machine learning bibliometric analysis2020in vivo343 suppl1613--1617 [Google Scholar]
  • Mohammad Khubeb Siddiqui, Ruben Morales-Menendez, Pradeep Kumar, Hafiz M.N. Iqbal Fida Hussain, Khudeja Khatoon, Sultan Ahmad, Correlation between temperature and COVID-19 (suspected, confirmed, and death) cases based on machine learning analysis2020J Pure Appl Microbiol14suppl 11017--1024 [Google Scholar]
  • Tao Ai, Zhenlu Yang, Hongyan Hou, Chenao Zhan, Chong Chen, Wenzhi Lv, Qian Tao, Ziyong Sun, Liming Xia, Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 casesChinaRadiological Society of North America2020 [Google Scholar]
  • Gergo Pinter, Imri Felde, Amir Mosavi, Pedram Chamisi, Rechard Gloaguen, COVID-19 pandemic prediction for Hungary; a hybrid machine learning approach2020Mathematics86890. [Google Scholar]
  • Yann LeCun, Yoshua Bengio, Geoffrey Hinton, Deep learning2015nature5217553436- -444 [Google Scholar]
  • Deep Learning2016MIT press [Google Scholar]
  • Dandi Yang, Cristhian Martinez, Lara Visuna, Hardev Khandhar, Chintan Bhatt, Jesus, Carretero, Detection and analysis of COVID-19 in medical images using deep learning techniques2021Scientific Reports1119638 [Google Scholar]
  • Diagnosing Parkinson’s Disease Based on Voice Recordings: Comparative Study Using Machine Learning Techniques49-60Springer [Google Scholar]
  • Heshui Shi, Xiaoyu Han, Chuansheng Zheng, Evolution of CT manifestations in a patient recovered from 2019 novel coronavirus (2019-nCoV) pneumonia in Wuhan, China2020Radiology295120--20 [Google Scholar]
  • He, Y., Chang, C.-H., & Gu, J. (2005). An area-efficient 64-bit square root carry-select adder for low-power applications. IEEE International Symposium on Circuits and Systems (ISCAS), 4, 4082–4085. [Google Scholar]
  • Filomena Puntillo, Mariateresa Giglio, Nicola Brienza, Omar Viswanath, Joseph Pergolizzi, Ivan Urits, Alan D. Kaye Antonella Paladini, Impact of COVID-19 pandemic on chronic pain management: Looking for the best way to deliver care2020Best practice \& research Clinical anaesthesiology34529-537 [Google Scholar]
  • Guan H., Zhou S., Wang Y., Li Q., Zhu T., Hu Q., Xia L., Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): a study of 63 patients in Wuhan, China2020European radiology3063306--3309 [Google Scholar]
  • Choi S., Lee J., Kang M.G., Min, H., Chang Y.S., Yoon, S., Large-scale machine learning of media outlets for understanding public reactions to nationwide viral infection outbreaks2017Methods12950--59 [Google Scholar]
  • Li, H. C., Yang, G., Yang, W., Du, Q., & Emery, W. J. (2020). Deep nonsmooth nonnegative matrix factorization network with semi-supervised learning for SAR image change detection. ISPRS Journal of Photogrammetry and Remote Sensing, 160, 167–179. [CrossRef] [Google Scholar]
  • Alafif T., Tehame A.M., Bajaba S., Barnawi A., Zia S., Machine and deep learning towards COVID-19 diagnosis and treatment: survey, challenges, and future directions 2021 International Journal of environmental research and Public health181117 [Google Scholar]
  • Ebaa Fayyoumi, Sahar Idwan, Heba AboShindi, Machine learning and statistical modeling for prediction of novel COVID-19 patients case study: Jordan 2020 International Journal of Advanced Computer Science and Applications115 [Google Scholar]
  • Gurjit S. Randhawa, Maximillian P.M. Soltysiak, Hadi El Roz, Camila P.E. de Souza, Kathleen A. Hill, and Lila Kari, Machine learning using intrinsic genomic signatures for rapid classification of novel pathogens: COVID-19 case study2020Plos one154e0232391 [Google Scholar]
  • 1994Machine learning, neural and statistical classificationCiteseer [Google Scholar]
  • Colubri A., Hartley M.A., Siakor M., Wolfman V., Felix A., Sesay T., Shaffer J.G., Garry R.F., Grant D.S., Levine A.C., Sabeti P.C., Machine-learning prognostic models from the 2014--16 Ebola outbreak: data-harmonization challenges, validation strategies, and mHealth applications2019EClinicalMedicine1154--64 [Google Scholar]
  • Wenlong Zhang, Xiaolin Zeng, Wuchao Wang, Multi-exposure image fusion based on wavelet transform2018International Journal of Advanced Robotic Systems151729881418768939 [Google Scholar]
  • Fang X., Jinghong L., Yueming S., Hui S., Xuan W., Multi-exposure image fusion techniques: a comprehensive review2022Remote Sensing14771 [Google Scholar]
  • Durqa P.K., Razwan P., Manikandan R., Amir H., Partial derivative nonlinear global pandemic machine learning prediction of covid 192020Chaos, Solitons \& Fractals139110056 [Google Scholar]
  • Shreshth Tuli, Shikhar Tuli Rakesh Tuli, Sukhpal Singh Gill, Predicting the growth and trend of the COVID-19 pandemic using machine learning and cloud computing2020Internet of Things100222 [Google Scholar]
  • Shortliffe1976Books: Computer-Based Medical Consultations: MYCINJournal of Clinical Engineering1169 [Google Scholar]
  • Bairoch A., Apweiler R., Wu C.H., Barker W.C., Boeckmann B., Ferro S., Gasteiger E., Huang H., Lopez R., Magrane M., Martin M.J., Natale D.A., O’Donovan C., Redaschi N., Yeh L.S. The universal protein resource (UniProt)2005Nucleic acids research33suppl\_1D154--D159 [Google Scholar]
  • Gonzalo N., Rafael B., Ricardo G., Two-step learning of fuzzy cognitive maps for prediction and knowledge discovery on the HIV-1 drug resistance2014Expert Systems with Applications413821--830 [Google Scholar]
  • Wang Y., Zhao Y., Therneau T.M., Atkinson E.J., Tafti A.P., Zhang N., Amin S., Limper A.H., Khosla S., Liu H., Unsupervised machine learning for the discovery of latent disease clusters and patient subgroups using electronic health records2020Journal of biomedical informatics102103364 [Google Scholar]
  • He Y., Xiang Z., Mobley H.L., Vaxign: the first web-based vaccine design program for reverse vaccinology and applications for vaccine development2010Journal of Biomedicine and Biotechnology2010 [Google Scholar]
  • Ong E., Wang H., Wong M.U., Seetharaman, M., Valdez, N., He, Y., Vaxign-ML: supervised machine learning reverse vaccinology model for improved prediction of bacterial protective antigens2020Bioinformatics36103185-3191. [Google Scholar]
  • Zainab Alzamili, Kassem M. Danach, Mondher Frikha, Deep Learning-Based Patch-Wise IlluminationEstimation for Enhanced Multi-Exposure Fusion, 2 November 2023, 2023.3328579 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.