Open Access
Issue |
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
|
|
---|---|---|
Article Number | 00016 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/bioconf/20249700016 | |
Published online | 05 April 2024 |
- S. Daas, A. Yahi, T. Bakir, M. Sedhane, M. Boughazi, and E.-B. Bourennane, “Multimodal biometric recognition systems using deep learning based on the finger vein and finger knuckle print fusion”, IET Image Processing, vol. 14, no. 15, pp. 3859–3868, 2021. [Google Scholar]
- M. H. Abdulameer and R. A. Kareem, “Face Identification Approach Using Legendre Moment and Singular Value Decomposition”, International Journal of Computing Digital System, vol. 13, no. 1, pp. 389–398, 2021. [Google Scholar]
- F. M. Bachay and M. H. Abdulameer, “Hybrid Deep Learning Model Based on Autoencoder and CNN for Palmprint Authentication”, International Journal of Intelligent Engineering Systems, vol. 15, no. 3, pp. 488–499, 2022. [Google Scholar]
- R. T. Mohammed, H. Kaur, B. Alankar, and R. Chauhan, “Recognition of human Iris for biometric identification using Daugman’s method”, IET Biometrics, vol. 11, no. 4, pp. 304–313, 2022. [CrossRef] [Google Scholar]
- T. Hafs, L. Bennacer, M. Boughazi, and A. Nait-Ali, “Empirical mode decomposition for online handwritten signature verification”, IET Biometrics, vol. 3, no. 5, pp. 190–199, 2016. [CrossRef] [Google Scholar]
- P. Byahatti and M. S. Shettar, “Fusion Strategies for Multimodal Biometric System Using Face and Voice Cues”, In: Proc. Of International Conference on Computational Engineering and Material Science, Karnataka, India, pp. 1–9, 2020. [Google Scholar]
- Y. Krishnakumari and G. Savitha, “A Review on Unimodal and Multimodal Biometric Systems”, International Journal of Innovative Science and Research Technology, vol. 2, no. 5, pp. 514–521, 2017. [Google Scholar]
- Z. Qin, P. Zhao, T. Zhuang, F. Deng, Y. Ding, and D. Chen, “A survey of identity recognition via data fusion and feature learning”, Information Fusion, vol. 91, no. 2023, pp. 694–712, 2023. [CrossRef] [Google Scholar]
- Y. Wang, D. Shi, and W. Zhou, “Convolutional neural network approach based on multimodal biometric system with fusion of face and finger vein features”, Sensors, vol. 22, no. 16, pp. 1–15, 2022. [Google Scholar]
- R. Srivastava et al., “Match-Level Fusion of Finger-Knuckle Print and Iris for Human Identity Validation Using Neuro- Fuzzy Classifier”, Sensors, vol. 22, no. 10, pp. 1–20, 2022. [Google Scholar]
- B. Ammour, L. Boubchir, T. Bouden, and M. Ramdani, “Face-iris multimodal biometric identification system”, Electronics, vol. 9, no. 1, pp. 1–18, 2020. [Google Scholar]
- O. N. Kadhim, F. H. Najjar, and K. T. Khudhair, “Detection of COVID-19 in X-Rays by Convolutional Neural Networks,” Iraqi Journal of Science, vol. 64, no. 4, pp. 1963–1974, 2023. DOI: 10.24996/ijs.2023.64.4.33. [CrossRef] [Google Scholar]
- Y. Bouzouina and L. Hamami, “Multimodal biometric: Iris and face recognition based on feature selection of iris with GA and scores level fusion with SVM”, In: Proc. Of International Conference on Bio-engineering for Smart Technologies, Paris, France, pp. 1–7, 2017. [Google Scholar]
- S. Soleymani, A. Dabouei, H. Kazemi, J. Dawson, and N. M. Nasrabadi, “Multi-Level Feature Abstraction from Convolutional Neural Networks for Multimodal Biometric Identification”, In: Proc. Of International Conference on Pattern Recognition, Beijing, China, 2018. [Google Scholar]
- M. H. Hamd and M. Y. Mohammed, “Multimodal Biometric System based Face-Iris Feature Level Fusion”, International Journal of Modern Education and Computer Science, vol. 11, no. 5, pp. 1–9, 2019. [CrossRef] [Google Scholar]
- R. Dwivedi and S. Dey, “A novel hybrid score level and decision level fusion scheme for cancelable multi-biometric verification”, Applied Intelligence, vol. 49, no. 3, pp. 1016–1035, 2019. [CrossRef] [Google Scholar]
- A. K. A. K. Yadav and P. T. Srinivasulu, “Fusion of multimodal biometrics of fingerprint, iris and hand written signatures traits using deep learning technique”, Turkish Journal of Computer and Mathematics Education, vol. 12, no. 11, pp. 1627–1638, 2021. [Google Scholar]
- N. Alay and H. H. Al-Baity, “Deep learning approach for multimodal biometric recognition system based on fusion of iris, face, and finger vein traits”, Sensors, vol. 20, no. 19, pp. 1–17, 2020. [Google Scholar]
- K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and alignment using multitask cascaded convolutional networks”, IEEE signal processing letters, vol. 23, no. 10, pp. 1499–1503, 2016. [CrossRef] [Google Scholar]
- R. T. Mohammed, H. Kaur, B. Alankar, and R. Chauhan, “Recognition of human Iris for biometric identification using Daugman’s method”, IET Biometrics, vol. 11, no. 4, pp. 304–313, 2022. [CrossRef] [Google Scholar]
- A. Matin, F. Mahmud, S. T. Zuhori, and B. Sen, “Human Iris as a Biometric for Identity Verification”, In: Proc. Of International Conference on Electrical Computer & Telecommunication Engineering, Bangladesh, 2016. [Google Scholar]
- F. Solihin, “Comparison of Support Vector Machine (SVM), K-Nearest Neighbor (K-NN), and Stochastic Gradient Descent (SGD) for Classifying Corn Leaf Disease based on Histogram of Oriented Gradients (HOG) Feature Extraction”, Elinvo, vol. 8, no. 1, 2023. [Google Scholar]
- J. Andén and S. Mallat, “Deep scattering spectrum”, IEEE Transactions on Signal Processing, vol. 62, no. 16, pp. 4114–4128, 2014. [CrossRef] [Google Scholar]
- S. Minaee and Y. Wang, “Palmprint Recognition Using Deep Scattering Convolutional Network”, In: Proc. Of International Symposium on Circuits and Systems, Baltimore, MD, USA, 2017. [Google Scholar]
- R. A. d. P. Jr et al., “Mitigation of nonlinear phase noise in single-channel coherent 16-QAM systems employing logistic regression”, Optical and Quantum Electronics, vol. 53, no. 9, pp. 1–14, 2021. [CrossRef] [Google Scholar]
- O. N. Kadhim and M. H. Abdulameer, “A multimodal biometric database and case study for face recognition based deep learning”, Bulletin of Electrical Engineering Informatics, vol. 13, no. 1, pp. 677–685, 2024. [CrossRef] [Google Scholar]
- H. M. L. Aung, C. Pluempitiwiriyawej, K. Hamamoto, and S. Wangsiripitak, “Multimodal Biometrics Recognition Using a Deep Convolutional Neural Network with Transfer Learning in Surveillance Videos”, computation, vol. 10, no. 127, pp. 1–15, 2022. [CrossRef] [Google Scholar]
- R. A. Rasool, “Feature-Level vs. Score-Level Fusion in the Human Identification System”, Applied Computational Intelligence and Soft Computing, vol. 2021, pp. 1–10, 2021. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.