Open Access
Issue
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
Article Number 00027
Number of page(s) 9
DOI https://doi.org/10.1051/bioconf/20249700027
Published online 05 April 2024
  • Müller, R.; Ritz, F.; Illium, S. and Linnhoff-Popien, C. (2021). Acoustic Anomaly Detection for Machine Sounds based on Image Transfer Learning. In Proceedings of the 13th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART; ISBN 978-989-758-484-8; ISSN 2184-433X, SciTePress, pages 49–56. DOI: 10.5220/0010185800490056. [CrossRef] [Google Scholar]
  • MathWorks., Audio-Based Anomaly Detection for Machine Health Monitoring. Retrieved from https://www.mathworks.com/help/audio/ug/audio-based-anomaly-detection-for-machine-health-monitoring.html. [Google Scholar]
  • Harsh Purohit, Ryo Tanabe, Kenji Ichige, Takashi Endo, Yuki Nikaido, Kaori Suefusa, and Yohei Kawaguchi, “MIMII Dataset: Sound Dataset for Malfunctioning Industrial Machine Investigation and Inspection,” arXiv preprint arXiv:1909.09347, 2019. [Google Scholar]
  • Mesaros, A., Heittola, T., and Virtanen, T. (2018). A multi-device dataset for urban acoustic scene classification. In Proceedings of the Detection and Classification of Acoustic Scenes and Events 2018 Workshop (DCASE2018), pages 9–13. [Google Scholar]
  • Abeβer, J. (2020). A review of deep learning-based methods for acoustic scene classification. Applied Sciences, 10(6). [Google Scholar]
  • Duman, T. B., Bayram, B., and Ince, G. (2019). Acoustic anomaly detection using convolutional autoencoders in industrial processes. In International Workshop on Soft Computing Models in Industrial and Environmental Applications, pages 432–442. Springer. [Google Scholar]
  • Marchi, E., Vesperini, F., Eyben, F., Squartini, S., and Schuller, B. (2015). A novel approach for automatic acoustic novelty detection using a denoising autoencoder with bidirectional lstm neural networks. In 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP), pages 1996–2000. IEEE. [CrossRef] [Google Scholar]
  • R. Wang, Y. Zhu, C.-C. Chang, and Q. Peng, “Privacy-preserving high-dimensional data publishing for classification,” Comput. Secur., vol. 93, p. 101785, 2020. [CrossRef] [Google Scholar]
  • Kawaguchi, Y., Tanabe, R., Endo, T., Ichige, K., and Hamada, K. (2019). Anomaly detection based on an ensemble of dereverberation and anomalous sound extraction. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 865–869. [CrossRef] [Google Scholar]
  • Koizumi, Y., Saito, S., Uematsu, H., Harada, N., and Imoto, K. (2019). Toyadmos: A dataset of miniaturemachine operating sounds for anomalous sound detection. In 2019 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pages 313–317. IEEE. [CrossRef] [Google Scholar]
  • Rushe, E. and Namee, B. M. (2019). Anomaly detection in raw audio using deep autoregressive networks. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3597–3601. [CrossRef] [Google Scholar]
  • A. Paranjpe, C. Zheng, and A. B. Chagpar, “Disparities in Breast Cancer Screening Between Caucasian and Asian American Women,” J. Surg. Res., vol. 277, pp. 110–115, 2022. [CrossRef] [Google Scholar]
  • MathWorks., Audio-Based Anomaly Detection for Machine Health Monitoring. Retrieved from https://www.mathworks.com/help/audio/ug/audio-based-anomaly-detection-for-machine-health-monitoring.html. [Google Scholar]
  • Harsh Purohit, Ryo Tanabe, Kenji Ichige, Takashi Endo, Yuki Nikaido, Kaori Suefusa, and Yohei Kawaguchi, “MIMII Dataset: Sound Dataset for Malfunctioning Industrial Machine Investigation and Inspection,” arXiv preprint arXiv:1909.09347, 2019. [Google Scholar]
  • Harsh Purohit, Ryo Tanabe, Kenji Ichige, Takashi Endo, Yuki Nikaido, Kaori Suefusa, and Yohei Kawaguchi, “MIMII Dataset: Sound Dataset for Malfunctioning Industrial Machine Investigation and Inspection,” in Proc. 4th Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE), 2019. [Google Scholar]
  • Purohit, Harsh & Tanabe, Ryo & Ichige, Kenji & Endo, Takashi & Nikaido, Yuki & Suefusa, Kaori & Kawaguchi, Yohei. (2019). MIMII Dataset: Sound Dataset for Malfunctioning Industrial Machine Investigation and Inspection. 2. [Google Scholar]
  • B. Abbasi and D. M. Goldenholz, “Machine learning applications in epilepsy,” Epilepsia, vol. 60, no. 10, pp. 20372047, 2019, DOI: 10.1111/epi.16333. [Google Scholar]
  • M. S. Saravanan, “Prediction of Temperature for Next Three Days Using Decision Tree Algorithm by Comparing Sliding Window Algorithm for Better Accuracy,” ECS Trans., vol. 107, no. 1, p. 14097, 2022. [CrossRef] [Google Scholar]
  • P.-Y. Hao, C.-F. Kung, C.-Y. Chang, and J.-B. Ou, “Predicting stock price trends based on financial news articles and using a novel twin support vector machine with fuzzy hyperplane,” Appl. Soft Comput., vol. 98, p. 106806, 2021. [CrossRef] [Google Scholar]
  • S. Ray, “A quick review of machine learning algorithms,” in 2019 International conference on machine learning, big data, cloud and parallel computing (COMITCon), IEEE, 2019, pp. 35–39. [Google Scholar]
  • L. Liu, G. Han, Z. Xu, J. Jiang, L. Shu, and M. Martinez-Garcia, “Boundary tracking of continuous objects based on binary tree structured SVM for industrial wireless sensor networks,” IEEE Trans. Mob. Comput., 2020. [Google Scholar]
  • L. Wang and X. Fu, Data mining with computational intelligence. Springer Science & Business Media, 2006. [Google Scholar]
  • Samira P., Saad S., Yilin Y., Haiman T., Yudong T., Maria P. Reyes, Mei-Ling S., Shu-Ching Chen, and S. S. Iyengar. 2018. A Survey on Deep Learning: Algorithms, Techniques, and Applications. ACM Comput. Surv. 51, 5, Article 92 (September2019), 36 pages. https://doi.org/10.1145/3234150. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.