Open Access
Issue |
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
|
|
---|---|---|
Article Number | 00033 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/bioconf/20249700033 | |
Published online | 05 April 2024 |
- C. Alberto da Silva, D. Filho, T. Pimentel, and Z. Panossian, “Analysis of crude oil effect for CO2 corrosion of carbon steel - A rotating cylinder electrode approach,” Geoenergy Science and Engineering, vol. 229, p. 212085, Oct. 2023, DOI: 10.1016/j.geoen.2023.212085. [CrossRef] [Google Scholar]
- F. Souas, A. Safri, and A. Benmounah, “A review on the rheology of heavy crude oil for pipeline transportation,” Petroleum Research, vol. 6, no. 2. KeAi Publishing Communications Ltd., pp. 116–136, Jun. 01, 2021. DOI: 10.1016/j.ptlrs.2020.11.001. [CrossRef] [Google Scholar]
- R. Martínez-Palou et al., “Transportation of heavy and extra-heavy crude oil by pipeline: A review,” J Pet Sci Eng, vol. 75, no. 3-4, pp. 274–282, Jan. 2011, DOI: 10.1016/j.petrol.2010.11.020. [CrossRef] [Google Scholar]
- R. I. Rueda-Velásquez and M. R. Gray, “A viscosity-conversion model for thermal cracking of heavy oils,” Fuel, vol. 197, pp. 82–90, Jun. 2017, DOI: 10.1016/j.fuel.2017.02.020. [CrossRef] [Google Scholar]
- A. Mohsenzadeh, Y. Al-Wahaibi, A. Jibril, R. Al-Hajri, and S. Shuwa, “The novel use of Deep Eutectic Solvents for enhancing heavy oil recovery,” J Pet Sci Eng, vol. 130, pp. 6–15, Jun. 2015, DOI: 10.1016/j.petrol.2015.03.018. [CrossRef] [Google Scholar]
- I. N. Sulaiman, A. H. Abdulla, and A. H. Hattab, “A study of the effectiveness of chemical additives on the characteristic flow of crude oils,” Periodicals of Engineering and Natural Sciences (PEN), vol. 10, no. 1, p. 397, Feb. 2022, DOI: 10.21533/pen.v10i1.2671. [CrossRef] [Google Scholar]
- P. Gateau, I. Hénaut, L. Barré, and J. F. Argillier, “Heavy Oil Dilution,” Oil & Gas Science and Technology, vol. 59, no. 5, pp. 503–509, Sep. 2004, DOI: 10.2516/ogst:2004035. [CrossRef] [Google Scholar]
- H. Karbstein and H. Schubert, “Developments in the continuous mechanical production of oil-in-water macroemulsions,” Chemical Engineering and Processing: Process Intensification, vol. 34, no. 3, pp. 205–211, Jun. 1995, DOI: 10.1016/0255-2701(94)04005-2. [CrossRef] [Google Scholar]
- D. Sharif Hamadi, G. Raheem, and S. Hussain, “Upgrading of Basrah-Kirkuk Blend Crude Oil Through Mechanical-Acoustical Effect and (LABS) as Surfactant,” 2012. [Online]. Available: www.pdffactory.com [Google Scholar]
- J. Liu, F. Yang, J. Xia, F. Wu, and C. Pu, “Mechanism of Ultrasonic Physical-Chemical Viscosity Reduction for Different Heavy Oils,” ACS Omega, vol. 6, no. 3, pp. 2276–2283, Jan. 2021, DOI: 10.1021/acsomega.0c05585. [CrossRef] [PubMed] [Google Scholar]
- X. Chen, L. Hou, W. Li, and S. Li, “Influence of electric field on the viscosity of waxy crude oil and micro property of paraffin: A molecular dynamics simulation study,” J Mol Liq, vol. 272, pp. 973–981, Dec. 2018, DOI: 10.1016/j.molliq.2018.10.097. [CrossRef] [Google Scholar]
- E. Du, Q. Zhao, Y. Xiao, L. Cai, and R. Tao, “Electric field suppressed turbulence and reduced viscosity of asphaltene base crude oil sample,” Fuel, vol. 220, pp. 358–362, May 2018, DOI: 10.1016/j.fuel.2018.01.098. [CrossRef] [Google Scholar]
- E. Du, X. Xu, K. Huang, H. Tang, and R. Tao, “Bunker diesel viscosity is dramatically reduced by electrorheological treatment,” Int J Mod Phys B, vol. 32, no. 2, Jan. 2018, DOI: 10.1142/S0217979218500121. [PubMed] [Google Scholar]
- R. Tao and X. Xu, “VISCOSITY REDUCTION IN LIQUID SUSPENSIONS BY ELECTRIC OR MAGNETIC FIELDS,” in Electrorheological Fluids and Magnetorheological Suspensions (ERMR 2004), WORLD SCIENTIFIC, Jun. 2005, pp. 299–305. DOI: 10.1142/9789812702197_0045. [CrossRef] [Google Scholar]
- R. Tao and X. Xu, “Reducing the Viscosity of Crude Oil by Pulsed Electric or Magnetic Field,” Energy & Fuels, vol. 20, no. 5, pp. 2046–2051, Sep. 2006, DOI: 10.1021/ef060072x. [CrossRef] [Google Scholar]
- R. Tao, K. Huang, H. Tang, and D. Bell, “Electrorheology improves engine efficiency,” J Phys Conf Ser, vol. 149, p. 012030, Feb. 2009, DOI: 10.1088/1742-6596/149/1/012030. [CrossRef] [Google Scholar]
- H. Tang, K. Huang, and R. Tao, “Electrorheology Improves Transportation of Crude Oil,” J Intell Mater Syst Struct, vol. 22, no. 15, pp. 1673–1676, Oct. 2011, DOI: 10.1177/1045389X11421816. [CrossRef] [Google Scholar]
- F. Homayuni, A. A. Hamidi, A. Vatani, A. A. Shaygani, and R. Faraji Dana, “The Viscosity Reduction of Heavy and Extra Heavy Crude Oils by a Pulsed Magnetic Field,” Pet Sci Technol, vol. 29, no. 23, pp. 2407–2415, Oct. 2011, DOI: 10.1080/10916461003645443. [CrossRef] [Google Scholar]
- R. Tao and H. Tang, “Reducing viscosity of paraffin base crude oil with electric field for oil production and transportation,” Fuel, vol. 118, pp. 69–72, Feb. 2014, DOI: 10.1016/j.fuel.2013.10.056. [CrossRef] [Google Scholar]
- R. Tao and G. Q. Gu, “Suppressing turbulence and enhancing liquid suspension flow in pipelines with electrorheology,” Phys Rev E Stat Nonlin Soft Matter Phys, vol. 91, no. 1, Jan. 2015, DOI: 10.1103/PhysRevE.91.012304. [Google Scholar]
- C. Ma et al., “Electrical Treatment of Waxy Crude Oil To Improve Its Cold Flowability,” Ind Eng Chem Res, vol. 56, no. 38, pp. 10920–10928, Sep. 2017, DOI: 10.1021/acs.iecr.7b02140. [CrossRef] [Google Scholar]
- C. Ma et al., “Influence of asphaltenes on the performance of electrical treatment of waxy oils,” J Pet Sci Eng, vol. 180, pp. 31–40, Sep. 2019, DOI: 10.1016/j.petrol.2019.05.020. [CrossRef] [Google Scholar]
- Q. Huang et al., “Reducing viscosity of waxy crude oil with electric field perpendicular to oil’s flow direction,” Fuel, vol. 283, p. 119345, Jan. 2021, DOI: 10.1016/j.fuel.2020.119345. [CrossRef] [Google Scholar]
- R. I. Ibrahim, M. K. Oudah, and A. F. Hassan, “Viscosity reduction for flowability enhancement in Iraqi crude oil pipelines using novel capacitor and locally prepared nanosilica,” J Pet Sci Eng, vol. 156, pp. 356–365, Jul. 2017, DOI: 10.1016/j.petrol.2017.05.028. [CrossRef] [Google Scholar]
- Y. Xie et al., “Combined treatment of electrical and ethylene-vinyl acetate copolymer (EVA) to improve the cold flowability of waxy crude oils,” Fuel, vol. 267, p. 117161, May 2020, DOI: 10.1016/j.fuel.2020.117161. [CrossRef] [Google Scholar]
- N. Jalal, R. Ibrahim, and M. Oudah, “Flow Improvement and Viscosity Reduction for Crude Oil Pipelines Transportation Using Dilution and Electrical Field,” Engineering and Technology Journal, vol. 40, no. 1, pp. 6675, Jan. 2022, DOI: 10.30684/etj.v40i1.2192. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.