Open Access
Issue
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
Article Number 00035
Number of page(s) 8
DOI https://doi.org/10.1051/bioconf/20249700035
Published online 05 April 2024
  • R. T. Anto and R. Ramachandran, “A Compression System for Unicode Files Using an Enhanced Lzw Method,” Pertanika Journal of Science & Technology, vol. 28, no. 4, 2020. [Google Scholar]
  • D. F. Djusdek, H. Studiawan, and T. Ahmad, “Adaptive image compression using adaptive Huffman and LZW,” in 2016 International Conference on Information & Communication Technology and Systems (ICTS), 2016: IEEE, pp. 101–106. [CrossRef] [Google Scholar]
  • Ö. Altaş And K. Tütüncü, “Implementation and Comparison of Text Compression Algorithms in Image Steganography.” [Google Scholar]
  • S. A. Abdulzahra, A. K. M. Al-Qurabat, and A. K. Idrees, “Data reduction based on compression technique for big data in IoT,” in 2020 international conference on emerging smart computing and informatics (ESCI), 2020: IEEE, pp. 103–108. [CrossRef] [Google Scholar]
  • M. S. Modabbes, “Study on impact of changing the nature of data on the overall file compression ratio,” Association of Arab Universities Journal of Engineering Sciences, vol. 29, no. 1, pp. 56–63, 2022. [Google Scholar]
  • B. Stecuła, K. Stecuła, and A. Kapczyński, “Compression of Text in Selected Languages-Efficiency, Volume, and Time Comparison,” Sensors, vol. 22, no. 17, p. 6393, 2022. [CrossRef] [PubMed] [Google Scholar]
  • G. Drost and N. G. Bourbakis, “A hybrid system for real-time lossless image compression,” Microprocessors and Microsystems, vol. 25, no. 1, pp. 19–31, 2001. [CrossRef] [Google Scholar]
  • A. Habib and M. S. Rahman, “Balancing decoding speed and memory usage for Huffman codes using quaternary tree,” in Applied Informatics, 2017, vol. 4, no. 1: SpringerOpen, pp. 1–15. [Google Scholar]
  • G. Navarro, “A self-index on block trees,” in International Symposium on String Processing and Information Retrieval, 2017: Springer, pp. 278–289. [CrossRef] [Google Scholar]
  • U. Jayasankar, V. Thirumal, and D. Ponnurangam, “A survey on data compression techniques: From the perspective of data quality, coding schemes, data type and applications,” Journal of King Saud UniversityComputer and Information Sciences, vol. 33, no. 2, pp. 119–140, 2021. [CrossRef] [Google Scholar]
  • D. A. Lelewer and D. S. Hirschberg, “Data compression,” ACM Computing Surveys (CSUR), vol. 19, no. 3, pp. 261–296, 1987. [CrossRef] [Google Scholar]
  • D. R.-J. G.-J. Rydning, J. Reinsel, and J. Gantz, “The digitization of the world from edge to core,” Framingham: International Data Corporation, vol. 16, pp. 1–28, 2018. [Google Scholar]
  • D. Salomon, A concise introduction to data compression. Springer Science & Business Media, 2007. [Google Scholar]
  • A. P. Sridhar and P. Lakshmi, “An efficient lossless medical data compression using lzw compression for optimal cloud data storage,” Annals of the Romanian Society for Cell Biology, vol. 25, no. 6, pp. 17144–17160, 2021. [Google Scholar]
  • A. Quddus and M. M. Fahmy, “A new compression technique for binary text images,” in Proceedings Second IEEE Symposium on Computer and Communications, 1997: IEEE, pp. 194–198. [CrossRef] [Google Scholar]
  • Z.-N. Li, M. S. Drew, J. Liu, Z.-N. Li, M. S. Drew, and J. Liu, “MPEG Audio Compression,” Fundamentals of Multimedia, pp. 505–531, 2021. [Google Scholar]
  • S. Porwal, Y. Chaudhary, J. Joshi, and M. Jain, “Data compression methodologies for lossless data and comparison between algorithms,” International Journal of Engineering Science and Innovative Technology (IJESIT) Volume, vol. 2, pp. 142–147, 2013. [Google Scholar]
  • K. Sharma and K. Gupta, “Lossless data compression techniques and their performance,” in 2017 International Conference on Computing, Communication and Automation (ICCCA), 2017: IEEE, pp. 256–261. [CrossRef] [Google Scholar]
  • F. S. Mahammad and V. M. Viswanatham, “Performance analysis of data compression algorithms for heterogeneous architecture through parallel approach,” The Journal of Supercomputing, vol. 76, no. 4, pp. 22752288, 2020. [CrossRef] [Google Scholar]
  • A. Gopinath and M. Ravisankar, “Comparison of lossless data compression techniques,” in 2020 International Conference on Inventive Computation Technologies (ICICT), 2020: IEEE, pp. 628–633. [CrossRef] [Google Scholar]
  • M. Ignatoski, J. Lerga, L. Stanković, and M. Daković, “Comparison of entropy and dictionary based text compression in English, German, French, Italian, Czech, Hungarian, Finnish, and Croatian,” Mathematics, vol. 8, no. 7, p. 1059, 2020. [CrossRef] [Google Scholar]
  • B. Vijayalakshmi and N. Sasirekha, “Comparative Analysis of Lossless Text Compression Methods with Novel Tamil Compression Technique,” International Journal of Research in Engineering and Science (IJRES), vol. 9, no. 7, pp. 38–44, 2021. [Google Scholar]
  • D. A. Huffman, “A method for the construction of minimum-redundancy codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952. [CrossRef] [Google Scholar]
  • R. Ranjan, “Canonical Huffman coding based image compression using wavelet,” Wireless Personal Communications, vol. 117, no. 3, pp. 2193–2206, 2021. [CrossRef] [Google Scholar]
  • M. A. Rahman and M. Hamada, “Burrows-wheeler transform based lossless text compression using keys and Huffman coding,” Symmetry, vol. 12, no. 10, p. 1654, 2020. [CrossRef] [Google Scholar]
  • J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE Transactions on information theory, vol. 23, no. 3, pp. 337–343, 1977. [CrossRef] [Google Scholar]
  • Q. Jiancheng, L. Yiqin, and Z. Yu, “Block-Split Array Coding Algorithm for Long-Stream Data Compression,” Journal of Sensors, vol. 2020, pp. 1–22, 2020. [CrossRef] [Google Scholar]
  • B. Vijayalakshmi and N. Sasirekha, “Lossless Text Compression Technique Based on Static Dictionary for Unicode Tamil Document,” Int. J. Pure Appl. Math, vol. 118, pp. 85–91, 2018. [Google Scholar]
  • N. H. Resham, H. K. Abbas, H. J. Mohamad, and A. H. Al-Saleh, “Noise Reduction, Enhancement and Classification for Sonar Images,” Iraqi Journal of Science, vol. 62, no. 11, pp. 4439–4452, 12/23 2021, DOI: 10.24996/ijs.2021.62.11(SI).25. [CrossRef] [Google Scholar]
  • H. K. Abbas, A. H. Al-Saleh, H. J. Mohamad, and A. A. Al-Zuky, “New algorithms to Enhanced Fused Images from Auto-Focus Images,” Baghdad Science Journal, vol. 18, no. 1, p. 0124, 03/10 2021, DOI: 10.21123/bsj.2021.18.1.0124. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.