Open Access
Issue
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
Article Number 00052
Number of page(s) 17
DOI https://doi.org/10.1051/bioconf/20249700052
Published online 05 April 2024
  • S. Rajarajeswari, J. Prasanna, M. Abdul Qadir, J. Christy Jackson, S. Sharma, and B. Rajesh, “Skin Cancer Detection using Deep Learning,” Res. J. Pharm. Technol., vol. 15, no. 10, pp. 4519–4525, 2022, DOI: 10.52711/0974-360X.2022.00758. [Google Scholar]
  • R. Patil and S. Bellary, “Machine learning approach in melanoma cancer stage detection,” J. King Saud Univ. -Comput. Inf. Sci., vol. 34, no. 6, pp. 3285–3293, 2022, DOI: 10.1016/j.jksuci.2020.09.002. [Google Scholar]
  • L. Guo, G. Xie, X. Xu, and J. Ren, “Effective melanoma recognition using a deep convolutional neural network with covariance discriminant loss,” Sensors (Switzerland), vol. 20, no. 20, pp. 1–14, 2020, DOI: 10.3390/s20205786. [Google Scholar]
  • N. C. F. Codella et al., “Skin lesion analysis toward melanoma detection: A challenge at the 2017 International Symposium on biomedical imaging (ISBI), hosted by the International Skin Imaging Collaboration (ISIC),” Proc. - Int. Symp. Biomed. Imaging, vol. 2018-April, no. Isbi, pp. 168–172, 2018, DOI: 10.1109/ISBI.2018.8363547. [Google Scholar]
  • S. Sreena and A. Lijiya, “Skin Lesion Analysis Towards Melanoma Detection,” 2019 2nd Int. Conf. Intell. Comput. Instrum. Control Technol. ICICICT 2019, no. D, pp. 32–36, 2019, DOI: 10.1109/ICICICT46008.2019.8993219. [Google Scholar]
  • W. Salma and A. S. Eltrass, “Automated deep learning approach for classification of malignant melanoma and benign skin lesions,” Multimed. Tools Appl., vol. 81, no. 22, pp. 32643–32660, 2022, DOI: 10.1007/s11042-022-13081-x. [CrossRef] [Google Scholar]
  • Y. Filali, H. El Khoukhi, M. A. Sabri, and A. Aarab, “Efficient fusion of handcrafted and pre-trained CNNs features to classify melanoma skin cancer,” Multimed. Tools Appl., Vol. 79, no. 41-42, pp. 31219–31238, 2020, DOI: 10.1007/s11042-020-09637-4. [CrossRef] [Google Scholar]
  • K. Das et al., “Machine learning and its application in skin cancer,” Int. J. Environ. Res. Public Health, 18, no. 24, 2021, DOI: 10.3390/ijerph182413409. [Google Scholar]
  • L. Zhang, H. J. Gao, J. Zhang, and B. Badami, “Optimization of the Convolutional Neural Networks for Automatic Detection of Skin Cancer,” Open Med., vol. 15, no. 1, pp. 27–37, 2020, DOI: 10.1515/med-2020-0006. [CrossRef] [Google Scholar]
  • S. İlkin, T. H. Gençtürk, F. Kaya Gülağız, H. Özcan, M. A. Altuncu, and S. Şahin, “Hybsvm: Bacterial colony optimization algorithm based SVM for malignant melanoma detection,” Eng. Sci. Technol. an Int. J., vol. 24, no. 5, pp. 1059–1071, 2021, DOI: 10.1016/j.jestch.2021.02.002. [CrossRef] [Google Scholar]
  • M. S. P. Balaji, S. Saravanan, M. Chandrasekar, G. Rajkumar, and S. Kamalraj, “Analysis of basic neural network types for automated skin cancer classification using Firefly optimization method,” J. Ambient Intell. Humans. Comput., vol. 12, no. 7, pp. 7181–7194, 2021, DOI: 10.1007/s12652-020-02394-0. [CrossRef] [Google Scholar]
  • N. Prabhakaran, “Non-invasive method of melanoma detection on the skin surface through extraction of image features using modified CAT optimization algorithm,” Curr. Sci., vol. 124, no. 5, pp. 562–569, 2023, DOI: 10.18520/cs/v124/i5/562-569. [Google Scholar]
  • M. H. Ahmed, R. R. Ema, and T. Islam, “An Automated Dermatological Images Segmentation Based on a New Hybrid Intelligent ACO-GA Algorithm and Diseases Identification Using TSVM Classifier,” 1st Int. Conf. Adv. Sci. Eng. Robot. Technol. 2019, ICASERT 2019, Vol. 2019, no. Icasert, pp. 1–6, 2019, DOI: 10.1109/ICASERT.2019.8934560. [Google Scholar]
  • R. A. A. Saleh and R. Akay, “Classification of Melanoma Images Using Modified Teaching Learning Based Artificial Bee Colony,” Eur. J. Sci. Technol., no. October, pp. 225–232, 2019, DOI: 10.31590/ejosat.637846. [CrossRef] [Google Scholar]
  • M. Aljanabi, J. K. Abed, H. J. Abd, A. H. Duhis, A. O. Abdallh, and N. Alani, “Discrimination between Healthy and Unhealthy Mole Lesions using Artificial Swarm Intelligence,” IOP Conf. Ser. Mater. Sci. Eng., 671, no. 1, 2020, DOI: 10.1088/1757-899X/671/1/012034. [Google Scholar]
  • S. Mukherjee, A. Adhikari, and M. Roy, “Melanoma Detection From Lesion Images Using Optimized Features Selected by Metaheuristic Algorithms,” Int. J. Healthc. Inf. Syst. Informatics, vol. 16, no. 4, pp. 1–22, 2021, DOI: 10.4018/IJHISI.288542. [CrossRef] [Google Scholar]
  • S. Mukherjee, A. Adhikari, and M. Roy, Malignant melanoma detection using multi-layer perceptron with optimized network parameter selection by PSO, vol. 812. Springer Singapore, 2019. DOI: 10.1007/978-981-13-1540-4_11. [Google Scholar]
  • M. Takruri, M. K. A. Mahmoud, and A. Al-Jumaily, “PSO-SVM hybrid system for melanoma detection from histo-pathological images,” Int. J. Electr. Comput. Eng., vol. 9, no. 4, pp. 2941–2949, 2019, DOI: 10.11591/ijece.v9i4.pp2941-2949. [Google Scholar]
  • J. Jaculin Femil and T. Jaya, “An Efficient Hybrid Optimization for Skin Cancer Detection Using PNN Classifier,” Comput. Syst. Sci. Eng., vol. 45, no. 3, pp. 2919–2934, 2023, DOI: 10.32604/csse.2023.032935. [CrossRef] [Google Scholar]
  • T. Y. Tan, L. Zhang, and C. P. Lim, “Adaptive melanoma diagnosis using evolving clustering, ensemble and deep neural networks,” Knowledge-Based Syst., Vol. 187, no. xxxx, 2020, DOI: 10.1016/j.knosys.2019.06.015. [Google Scholar]
  • N. Razmjooy, F. Rashid Sheykhahmad, and N. Ghadimi, “A hybrid neural network - world cup optimization algorithm for melanoma detection,” Open Med., vol. 13, no. 1, pp. 9–16, 2018, DOI: 10.1515/med-2018-0002. [CrossRef] [Google Scholar]
  • D. Bi, D. Zhu, F. R. Sheykhahmad, and M. Qiao, “Computer-aided skin cancer diagnosis based on a New metaheuristic algorithm combined with support vector method,” Biomed. Signal Process. Control, vol. 68, no. 4655, pp. 102631, 2021, DOI: 10.1016/j.bspc.2021.102631. [CrossRef] [Google Scholar]
  • Z. Fu, J. An, Q. Yang, H. Yuan, Y. Sun, and H. Ebrahimian, “Skin cancer detection using Kernel Fuzzy C-means and Developed Red Fox Optimization algorithm,” Biomed. Signal Process. Control, Vol. 71, no. PA, p. 103160, 2022, DOI: 10.1016/j.bspc.2021.103160. [CrossRef] [Google Scholar]
  • E. H. Houssein, D. A. Abdelkareem, M. M. Emam, M. A. Hameed, and M. Younan, “An efficient image segmentation method for skin cancer imaging using improved golden jackal optimization algorithm,” Comput. Biol. Med., Vol. 149, no. August, p. 106075, 2022, DOI: 10.1016/j.compbiomed.2022.106075. [CrossRef] [Google Scholar]
  • T. Mustafa and J. Alneamy, “Medical Images Classification Using Artificial Intelligence,” J. Educ. Sci., vol. 31, no. 3, pp. 110–122, 2022, DOI: 10.33899/edusj.2022.133358.1224. [Google Scholar]
  • V. N. Lakshmi and P. Nirmala, “Identification of Acral Melanoma using Genetic Algorithms Compared with Convolutional Neural Network using Dermoscopic Images,” Cardiometry, no. 25, pp. 1640–1645, 2023, DOI: 10.18137/cardiometry.2022.25.16401645. [CrossRef] [Google Scholar]
  • R. Mohakud and R. Dash, “Designing a grey wolf optimization based hyper-parameter optimized convolutional neural network classifier for skin cancer detection,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 8, pp. 6280–6291, 2022, DOI: 10.1016/j.jksuci.2021.05.012. [Google Scholar]
  • E. B. A. Ş. Aran, “Skin Cancer Diagnosis Using CNN Features with Genetic Algorithm and Particle Swarm Optimization Methods,” pp. 1–17, 2022. [Google Scholar]
  • N. Zhang, Y. X. Cai, Y. Y. Wang, Y. T. Tian, X. L. Wang, and B. Badami, “Skin cancer diagnosis based on optimized convolutional neural network,” Artif. Intell. Med.,Vol. 102, p. 101756, 2020, DOI: 10.1016/j.artmed.2019.101756. [CrossRef] [Google Scholar]
  • G. Li and G. Jimenez, “Optimal diagnosis of the skin cancer using a hybrid deep neural network and grasshopper optimization algorithm,” Open Med., vol. 17, no. 1, pp. 508–517, 2022, DOI: 10.1515/med-2022-0439. [CrossRef] [Google Scholar]
  • A. Tyagi and R. Mehra, “An optimized CNN-based intelligent prognostics model for disease prediction and classification from Dermoscopy images,” Multimed. Tools Appl., Vol. 79, no. 35-36, pp. 26817–26835, 2020, DOI: 10.1007/s11042-020-09074-3. [CrossRef] [Google Scholar]
  • L. Di Biasi, F. De Marco, A. Auriemma Citarella, P. Barra, S. Piotto Piotto, and G. Tortora, Hybrid Approach for the Design of CNNs Using Genetic Algorithms for Melanoma Classification, vol. 1. Springer Nature Switzerland, 2023. DOI: 10.1007/978-3-031-37660-3_36. [Google Scholar]
  • G. I. Sayed, M. M. Soliman, and A. E. Hassanien, “A novel melanoma prediction model for imbalanced data using optimized SqueezeNet by bald eagle search optimization,” Comput. Biol. Med., Vol. 136, no. April, p. 104712, 2021, DOI: 10.1016/j.compbiomed.2021.104712. [CrossRef] [Google Scholar]
  • E. Pérez and S. Ventura, “An ensemble-based convolutional neural network model powered by a genetic algorithm for melanoma diagnosis,” Neural Comput. Appl., vol. 34, no. 13, pp. 10429–10448, 2022, DOI: 10.1007/s00521-021-06655-7. [CrossRef] [Google Scholar]
  • H. Shaheen and M. P. Singh, “Multiclass skin cancer classification using particle swarm optimization and convolutional neural network with information security,” J. Electron. Imaging, vol. 32, no. 04, pp. 1–21, 2022, DOI: 10.1117/1.jei.32.4.042102. [CrossRef] [Google Scholar]
  • T. Y. Tan, L. Zhang, S. C. Neoh, and C. P. Lim, “Intelligent skin cancer detection using enhanced particle swarm optimization,” Knowledge-Based Syst.,Vol. 158, pp. 118–135, 2018, DOI: 10.1016/j.knosys.2018.05.042. [CrossRef] [Google Scholar]
  • A. K. Tiwari, M. Kumar Mishra, A. R. Panda, and B. Panda, “Parametric Examination on Optimized Deep Learning based Melanoma Detection,” 2021 4th Int. Conf. Electr. Comput. Commun. Technol. ICECCT 2021, pp. 1–8, 2021, DOI: 10.1109/ICECCT52121.2021.9616885. [Google Scholar]
  • F. Golnoori, F. Z. Boroujeni, and A. Monadjemi, “Metaheuristic algorithm based hyper-parameters optimization for skin lesion classification,” Multimed. Tools Appl., vol. 82, no. 17, pp. 25677–25709, 2023, DOI: 10.1007/s11042-023-14429-7. [CrossRef] [Google Scholar]
  • S. P. Karuppiah, A. Sheeba, S. Padmakala, and C. A. Subasini, “An Efficient Galactic Swarm Optimization Based Fractal Neural Network Model with DWT for Malignant Melanoma Prediction,” Neural Process. Lett., vol. 54, no. 6, pp. 5043–5062, 2022, DOI: 10.1007/s11063-022-10847-0. [CrossRef] [Google Scholar]
  • A. Damarla and D. Sumathi, “An Approach for Optimization of Features using Gorilla Troop Optimizer for Classification of Melanoma,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 10, pp. 275–286, 2022, DOI: 10.14569/IJACSA.2022.0131034 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.