Open Access
Issue |
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
|
|
---|---|---|
Article Number | 00059 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/bioconf/20249700059 | |
Published online | 05 April 2024 |
- M. Korkmaz, E. Kocyigit, O. K. Sahingoz, and B. Diri, “A Hybrid Phishing Detection System Using Deep Learning-based URL and Content Analysis,” Elektronika Ir Elektrotechnika, vol.28, no.5, pp.80–89, Oct 2022. DOI: 10.5755/j02.eie.31197 [CrossRef] [Google Scholar]
- A. Basit, M. Zafar, X. Liu, A. R. Javed, Z. Jalil, and K. Kifayat, “A comprehensive survey of AI-enabled phishing attacks detection techniques,” Telecommunication Systems, vol. 76, pp.139–154, Oct 2020. DOI: 10.1007/s11235-020-00733-2 [Google Scholar]
- A. Zamir, H. U. Khan, T. Iqbal, N. Yousaf, F. Aslam, A. Anjum, and M. Hamdani, “Phishing web site detection using diverse machine learning algorithms, ” The Electronic Library, Vol. 38, no. 1, pp. 65–80, Jan 2020. DOI: 10.1108/EL-05-2019-0118 [CrossRef] [Google Scholar]
- Kocyigit E., M. Korkmaz, O. K. Sahingoz, and B. Diri, “Real-Time Content-Based Cyber Threat Detection with Machine Learning,” In Intelligent Systems Design and Applications, vol.1351, pp.1394–1403, Jun 2021. DOI: 10.1007/978-3-030-71187-0_129 [CrossRef] [Google Scholar]
- K. S. Ray and R. Kusshwaha, “Detection of Malicious URLs Using Deep Learning Approach,” In The “Essence” of Network Security: An End-to-End Panorama, vol.163, pp.189–212, Nov 2020. DOI: 10.1007/978-981-15-9317-8_8 [CrossRef] [Google Scholar]
- S. Sountharrajan, M. Nivashini, S. K. Shandilya, E. Suganya, A. B. Banu, and M. Karthiga, “Dynamic Recognition of Phishing URLs Using Deep Learning Techniques,” In Advances in Cyber Security Analytics and Decision Systems, pp.27–56, Jan 2020. DOI: 10.1007/978-3-030-19353-9_3 [CrossRef] [Google Scholar]
- S. Selvaganapathy, M. Nivaashini, and H. Natarajan, “Deep belief network based detection and categorization of malicious URLs,” Information Security Journal: A Global Perspective, vol.27, no.3, pp.145–161, Apr 2018. DOI: 10.1080/19393555.2018.1456577 [CrossRef] [Google Scholar]
- W. Yang, W. Zuo, and B. Cui, “Detecting Malicious URLs via a Keyword-Based Convolutional Gated-Recurrent-Unit Neural Network,” IEEE Access, vol.7, pp.29891–29900, Jan 2019. DOI: 10.1109/ACCESS.2019.2895751 [CrossRef] [Google Scholar]
- T. Rasymas and L. Dovydaitis, “Detection of Phishing URLs by Using Deep Learning Approach and Multiple Features Combinations,” Baltic Journal of Modern Computing, vol.8, no.3, pp.471–483, 2020. DOI: 10.22364/bjmc.2020.8.3.06 [CrossRef] [Google Scholar]
- B. Wei, R. A. Hamad, L. Yang, X. He, H. Wang, B. Gao, and W. L. Woo, “A DeepLearning-Driven Light-Weight Phishing Detection Sensor,” Sensors, vol. 19, no.19, pp.4258, Sep 2019. DOI: 10.3390/s19194258 [CrossRef] [PubMed] [Google Scholar]
- A. Aljofey, Q. Jiang, Q. Qu, M. Huang, and J. Niyigena, “An Effective Phishing Detection Model Based on Character Level Convolutional Neural Network from URL,” Electronics, vol.9, no.9, pp.1514, Sep 2020. DOI: 10.3390/electronics9091514 [CrossRef] [Google Scholar]
- M. A. Adebowale, K. T. Lwin, E. Sánchez, and M. A. Hossain, “Intelligent web-phishing detection and protection scheme using integrated features of Images, frames and text,” Expert Systems with Applications, vol.115, pp.300–313, Jan 2019. DOI: 10.1016/j.eswa.2018.07.067 [CrossRef] [Google Scholar]
- M. S. Kumar and B. Indrani, “Frequent rule reduction for phishing URL classification using fuzzy deep neural network model,” Iran Journal of Computer Science, vol.4, pp.85–93, Jul 2020. DOI: 10.1007/s42044-020-00067-x [Google Scholar]
- E. A. Aldakheel, M. Zakariah, G. A. Gashgari, F. A. Almarshad, and A. I. A. Alzahrani, “A Deep Learning-Based Innovative Technique for Phishing Detection in Modern Security with Uniform Resource Locators, ” Sensors, vol.23, no.9, pp. 1–17, Apr 2023. DOI: 10.3390/s23094403 [Google Scholar]
- A. Aljofey, Q. Jiang, A. Rasool, H. Chen, W. Liu, Q. Qu, and Y. Wang, “An effective detection approach for phishing websites using URL and HTML features,” Scientific Reports, vol.12, no.8842, pp.1–19, May 2022. DOI: 10.1038/s41598-022-10841-5 [CrossRef] [PubMed] [Google Scholar]
- H. Kansagara, V. Raval, F. Shaikh, and S. Kudoo, “A Hybrid Approach For Phishing Website Detection Using Machine Learning,” VIVA-Tech International Journal for Research and Innovation, vol.1, no.4, pp.1–6, 2021. [Google Scholar]
- M. M. Alani, L. Mauri, and E. Damiani, “A two-stage cyber attack detection and classification system for smart grids,” Internet of Things (Netherlands), Vol. 24, 2023, DOI: 10.1016/j.iot.2023.100926. [Google Scholar]
- T. Makarovskikh, A. Salah, A. Badr, A. Kadi, H. Alkattan and M. Abotaleb, “Automatic classification Infectious disease X-ray images based on Deep learning Algorithms,” 2022 VIII International Conference on Information Technology and Nanotechnology (ITNT), Samara, Russian Federation, 2022, pp. 1–6, DOI: 10.1109/ITNT55410.2022.9848538. [Google Scholar]
- Al-Nuaimi, B. T., Al-Mahdawi, H. K., Albadran, Z., Alkattan, H., Abotaleb, M., & El-kenawy, E. S. M. (2023). Solving of the inverse boundary value problem for the heat conduction equation in two intervals of time. Algorithms, 16 (1), 33. [CrossRef] [Google Scholar]
- E. Mushtaq, A. Zameer, M. Umer, and A. A. Abbasi, “A two-stage intrusion detection system with auto-encoder and LSTMs,” Applied Soft Computing, vol.121, pp.108768, May 2022. DOI: 10.1016/j.asoc.2022.108768 [CrossRef] [Google Scholar]
- M. Abotaleb, T. Makarovskikh, A. Ali Subhi, H. Alkattan and A. O. Adebayo, “Forecasting and modeling on average rainwater and vapor pressure in Chelyabinsk Russia using deep learning models,” 6th Smart Cities Symposium (SCS 2022), Hybrid Conference, Bahrain, 2022, pp. 362–367, DOI: 10.1049/icp.2023.0582. [CrossRef] [Google Scholar]
- M. Mahmoud, M. Kasem, A. Abdallah, and H. S. Kang, “AE-LSTM: Autoencoder with LSTM-Based Intrusion Detection in IoT,” In Proceedings of the International Telecommunication Conference, pp.1–6, Jul 2022. DOI: 10.1109/ITCEgypt55520.2022.9855688 [Google Scholar]
- H. C. Altunay and Z. Albayrak, “A hybrid CNN+LSTM-based intrusion detection system for industrial IoT networks,” Engineering Science and Technology, an International Journal, vol.38, pp.101322, Feb 2023. DOI: 10.1016/j.jestch.2022.101322 [CrossRef] [Google Scholar]
- Al-Mahdawi, H. K., Albadran, Z., Alkattan, H., Abotaleb, M., Alakkari, K., & Ramadhan, A. J. (2023, December). Using the inverse Cauchy problem of the Laplace equation for wave propagation to implement a numerical regularization homotopy method. AIP Conference Proceedings (Vol. 2977, No. 1). AIP Publishing. [Google Scholar]
- V. Ravi, R. Chaganti, and M. Alazab, “Recurrent deep learning-based feature fusion ensemble meta-classifier approach for intelligent network intrusion detection system,” Computers and Electrical Engineering, vol.102, pp.108156, Sep 2022. DOI: 10.1016/j.compeleceng.2022.108156 [CrossRef] [Google Scholar]
- Akbari, E., Mollajafari, M., Al-Khafaji, H. M. R., Alkattan, H., Abotaleb, M., Eslami, M., & Palani, S. (2022). Improved salp swarm optimization algorithm for damping controller design for multimachine power system. IEEE Access, 10, 82910–82922. [CrossRef] [Google Scholar]
- H. Alkattan, M. Abotaleb, A. Ali Subhi, O. A. Adelaja, A. Kadi and H. K. Ibrahim Al-Mahdawi, “The prediction of students' academic performances with a classification model built using data mining techniques,” 6th Smart Cities Symposium (SCS 2022), Hybrid Conference, Bahrain, 2022, pp. 353–356, DOI: 10.1049/icp.2023.0577. [CrossRef] [Google Scholar]
- A. Kim, M. Park, and D. H. Lee, “AI-IDS: Application of Deep Learning to Real-Time Web Intrusion Detection,” IEEE Access, vol.8, pp.70245–70261, Apr 2020. DOI: 10.1109/ACCESS.2020.2986882 [CrossRef] [Google Scholar]
- Ehsan Khodadadi, S. K. Towfe, Hussein Alkattan. (2023). Brain Tumor Classification Using Convolutional Neural Network and Feature Extraction. Fusion: Practice and Applications, 13(2), 34–41. [CrossRef] [Google Scholar]
- T. A. S. Srinivas, and S. S. Manivannan, “Prevention of Hello Flood Attack in IoT using combination of Deep Learning with Improved Rider Optimization Algorithm,” Computer Communications, vol.163, pp.162–175, Nov 2020. DOI: 10.1016/j.comcom.2020.03.03 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.