Open Access
Issue
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
Article Number 00062
Number of page(s) 16
DOI https://doi.org/10.1051/bioconf/20249700062
Published online 05 April 2024
  • Michels, H. T., Noyce, J. O., Wilks, S. A., & Keevil, C. W. (2005) “Copper Alloys For Human Infectious Disease Control.” Copper For The 21st Century, Materials Science & Technology, Pp.1546–2498. (ASM International Conference 2005, Metals Park, OH) 2017. [Google Scholar]
  • Skočovský, P. et al. Designing Materials [In Slovak]. 1st Ed., EDIS, 2000, ISBN 80-7100-608-4 Accessed on 7 January 2018. [Google Scholar]
  • Skočovský, P. et al. Material Sciences for The Fields of Mechanical Engineering [In Slovak]. 2nd Ed., EDIS, 2006, ISBN 80-8070-593-3. [Google Scholar]
  • Schmidt, R. F., and D. G. Schmidt. “Selection And Application of Copper Alloy Casting.” ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special- Purpose Materials, Edited by ASM International, 1997, Pp. 1150–1180, ISBN 0-87170-378-5. [Google Scholar]
  • Schmidt, R. F., D. G. Schmidt, and M. Sahoo. “Copper And Copper Alloys.” ASM Handbook Volume 15: Casting, Edited by ASM International, 1998, Pp. 1697–1734, ISBN 0-87170-007-7. [Google Scholar]
  • Michels, H. T., Noyce, J. O., & Keevil, C. W. (2009) “Effects of Temperature and Humidity on The Efficacy of Methicillin- Resistant Staphylococcus Aureus Challenged Antimicrobial Materials Containing Silver and Copper.” Letters In Applied Microbiology. Vol. 49:191–195. [CrossRef] [Google Scholar]
  • Weaver, L., Michels, H. T., Keevil, C. W. (2009) “Potential for Pre- Venting Spread of Fungi in AirConditioning Systems Constructed Using Copper Instead of Aluminum.” Letters In Applied Microbiology. Accepted For Publication in September 2009. [Google Scholar]
  • Kuhn, P. J. (1983) “Doorknobs: A Source of Nosocomial Infection?” Diagnostic Medicine. Nov/Dec. [Google Scholar]
  • Weaver, L., Michels, H. T., & Keevil, C. W. (2008) “Survival of Clostridium Difficile on Copper and Steel: Futuristic Options For Hospital Hygiene.” Journal Of Hospital Infection. Vol. 68 (2):145–151. 2008. [CrossRef] [Google Scholar]
  • Santo, C. E. et al. (2008) “Contribution of Copper Ion Resistance To Sur- Rival Of Escherichia Coli On Metallic Copper Surfaces. Applied And Environmental Microbiology. Vol. 74 (4):977–986. [CrossRef] [PubMed] [Google Scholar]
  • Michels, H. T., Noyce, J. O., & Keevil, C. W. (2009) “Effects Of Temperature And Humidity On The Efficacy Of Methicillin- Resistant Staphylococcus Aureus Challenged Antimicrobial Materials Containing Silver And Copper.” Letters In Applied Microbiology. Vol. 49:191–195. 2018. [CrossRef] [Google Scholar]
  • Salgado, C. D., Sepkowitz, K. A., Placket, T., John, J. F., Cantey, J. R., Atwater, H. H., Steed, L. L., Michels, H. T., and Schmidt, M. G. (2008) “Microbial Burden Of Objects In ICU Rooms.” Inter Science Conference For Antimicrobial Agents In Chemotherapy (ICAAC). Poster Presentation 2015. [Google Scholar]
  • Weaver, L., Michels, H. T., Keevil, C. W. (2009) “Potential For Pre- Venting Spread Of Fungi In AirConditioning Systems Constructed Using Cop- Per Instead Of Aluminum.” Letters In Applied Microbiology. Accepted For Publication In September 2009. [Google Scholar]
  • AMERICAN SOCIETY FOR TESTING MATERIALS (Revised Annually) “Copper And Copper Alloys.” Annual Book Of ASTM Standards, Vol.2.1 (2), (ASTM International, West Conshohocken, PA) [Google Scholar]
  • Copper Smelter Furnace Price.” Made-In-China.Com, Sa.Made-In-China.Com/Tag_Search_Product/Copper-Smelter-Furnace_Price_Ieesooon_1.Html. Accessed [Today's Date] 2014. [Google Scholar]
  • Scrap Copper Wire Recycling Machine.” Feed Pellet Mill, M.Feed-Pelletmill.Com/Copper-Wire-Recycling-Machine/Copper-Wire-Granulator/Scrap-Copper-Wire-Recycling-Machine.Html. [Google Scholar]
  • Waste Recycling Services Market.” Precedence Research, www.Precedenceresearch.Com/Waste-Recycling-Services-Market. [Google Scholar]
  • Jackson, Bruce. “Copper Recycling Process.” Linkedin, www.Linkedin.Com/Pulse/Copper-Recycling-Process-Bruce-Jackson. [Google Scholar]
  • Wang, Shengtao, et al. “Copper from Industrial Waste: A Review of Recent Research.” Sciencedirect, Elsevier, [Date Of Publication], www.Sciencedirect.Com/Science/Article/Abs/Pii/S0959652620353002. [Google Scholar]
  • “Copper Making Process.” Heraeus, www.Heraeus.Com/En/Hen/Your_Process_Challenge/Copper_Making/Process_Challenge_Copper.Html. [Google Scholar]
  • Ungureanu, C.A.; Das, S.K.; Jawahir, I.S. Life-Cycle Cost Analysis: Aluminum Versus Steel In Passenger Cars. In Aluminum Alloys for Transportation, Packaging, Aerospace, And Other Applications, 1st Ed.; Das, K.S., Yin, W., Eds.; TMS: Pittsburgh, PA, USA, 2007; Pp. 11–24. [Google Scholar]
  • Totten, G.E.; Mackenzie, D.S. Handbook Of Aluminum: Vol. 1: Physical Metallurgy And Processes, 1st Ed.; CRC Press: New York, NY, USA, 2003; Pp. 1–33. [Google Scholar]
  • Metson, J. Production Of Alumina. In Fundamentals Of Aluminum Metallurgy, 1st Ed.; Lumley, R., Ed.; Woodhead Publishing: Cambridge, UK, 2011; Pp. 23–48. [CrossRef] [Google Scholar]
  • Nappi, C. The Global Aluminium Industry 40 Years From 1972; International Aluminium Institute: London, UK, 2013; Pp. 1–27. [Google Scholar]
  • Beck, T.R. A New Energy-Efficient And Environmentally Friendly Process To Produce Aluminum. JOM 2013, 65, 267–271. [Crossref] [Google Scholar]
  • Antrqekowitsch, H.; Hank, G.; Ebner, P. Recycling Of Different Types Of Magnesium Scrap. In Magnesium Technology 2002, 1st Ed.; Kaplan, H.I., Ed.; TMS: Pittsburgh, PA, USA, 2002; Pp. 43–48. [Google Scholar]
  • Bureau Of International Recycling (BIR). Available Online: www.Bir.Org (Accessed On 15 December 2017). [Google Scholar]
  • Bloomberg, J.; Söderholm, P. The Economics Of Secondary Aluminium Supply: An Econometric Analysis Based On European Data. Rescuer. Conserv. Recycl. 2009, 53, 455–463. [Crossref] [CrossRef] [Google Scholar]
  • Sevigné-Itoiza, E.; Gasola, C.M.; Rieradevalla, J.; Gabriella, X. Environmental Consequences Of Recycling Aluminum Old Scrap In A Global Market. Resort. Conserv. Recycl. 2014, 89, 94–103. [Crossref] [CrossRef] [Google Scholar]
  • Huang, X.-L.; Badawy, A.E.; Arambewela, M.; Ford, R.; Barlaz, M.; Tolaymat, T. Characterization Of Salt Cake From Secondary Aluminum Production. J. Hazard. Mater. 2014, 273, 192–199. [Crossref] [Pubmed] [CrossRef] [Google Scholar]
  • Bell, S.; Davis, B.; Javaid, A.; Essadiqi, E. Final Report On Scrap Management, Sorting And Classification Of Aluminum; Report No. 2003-22(CF); Government Of Canada: Ottawa, ON, Canada, 2003. [Google Scholar]
  • Schlesinger, M.E. Aluminum Recycling, 1st Ed.; CRC Press: Boca Raton, FL, USA, 2007; Pp. 63–65, 71–75. [Google Scholar]
  • Nijhof, G.H. Aluminium Separation Out Of Household Waste Using The Eddy Current Technique And Re-Use Of The Metal Fraction. Resort. Conserv. Recycl. 1994, 10, 161–169. [Crossref] [CrossRef] [Google Scholar]
  • Meson, M.B.; De Jong, T.P.R.; Dalmijn, W.L. Improvements In Separation Of Non-Ferrous Scrap Metals Using An Electromagnetic Sensor. Phys. Sep. Sci. Eng. 2003, 12, 87–101. [Crossref] [CrossRef] [Google Scholar]
  • Coates, G.; Rahimifard, S. Modelling Of Post-Fragmentation Waste Stream Processing Within UK Shredder Facilities. Waste Manga. 2009, 29, 44–53. [Crossref] [Pubmed] [CrossRef] [Google Scholar]
  • Rao, B.V.; Kapur, P.C.; Konnur, R. Modeming The Size-Density Partition Surface OfDense-Medium Separators. Int. J. Miner. Process. 2003, 72, 443–453. [CrossRef] [Google Scholar]
  • De Jong, T.P.R.; Dalmijn, W.L. Improving Jigging Results OfNon-Ferrous Car Scrap By Application Of An Intermediate Layer. Int. J. Miner. Process. 1997, 49, 59–72. [Crossref] [CrossRef] [Google Scholar]
  • Spencer, D.B. The High-Speed Identification And Sorting Of Nonferrous Scrap. JOM 2005, 57, 46–51. [Crossref] [CrossRef] [Google Scholar]
  • Brown, R.D.J.; Ambrose, F.; Montagna, D. Separation Of Cast And Wrought Aluminum Alloys By Thermomechanical Processing; U.S. Department Of The Interior, Bureau Of Mines: Washington, DC, USA, 1985. [Google Scholar]
  • Comtois, R.; Jansen, T. Automated XRF Technology For Advanced Separation. In Proceedings Of The Sensorgestützte Sortierung, Aachen, Germany, 28-30 March 2008; Pp. 53–54. [Google Scholar]
  • Austin Al—Automation & Instrumentation. Available Online: www.Austinai.Com (Accessed On 7 November 2017). [Google Scholar]
  • Werheit, P.; Noll, R.; Fricke-Begemann, C.; Reedmen, T.; Gesing, M.; Pichat, A.; Makowe, J. Fully Automated LIBS Sorting System For Single Particle Analysis In Metal Recycling. In Proceedings Of The Sensor Based Sorting, Aachen, Germany, 17-19 April 2012. Available Online: Https://Www.Parilas.Eu/Content/Dam/Parilas/En/Documents/Publications/Presentation_Sensor_Based_Sorting_2012_Rev12_Wp.Pdf (Accessed On 5 December 2017). [Google Scholar]
  • Whereat, P.; Fricke-Begemann, C.; Gesing, M.; Noll, R. Fast Single Piece Identification With A 3D Scanning LIBS For Aluminium Cast And Wrought Alloys Recycling. J. Anal. At. Spectrom. 2011, 26, 2166–2174. [Crossref] [CrossRef] [Google Scholar]
  • Schultz, P.B.; Wyss, R.K. Color Sorting Aluminum Alloys For Recycling-Part II. Plat. Surf. Finish. 2000, 87, 62–65. [Google Scholar]
  • Koyanaka, S.; Kobayashi, K.; Yamamoto, Y.; Kimurab, M.; Rokucho, K. Elemental Analysis Of Lightweight Metal Scraps Recovered By An Automatic Sorting Technique Combining A Weight Meter And A Laser 3D ShapeDetection System. Rescuer. Conserv. Recycl. 2013, 75, 63–69. [Crossref] [CrossRef] [Google Scholar]
  • Nishikawa, H.; Seo, K.; Katayama, S.; Takemoto, T. Application Of Nd:YAG Laser To Aluminum Alloy Sorting. Mater. Trans. 2005, 46, 2641–2646. [Crossref] [CrossRef] [Google Scholar]
  • Tsuchiya, K.; Goto, Y.; Hatano, T.; Owad, S.; Takasugi, A.; Katie, Y.; Funakoshi, T.H.; Yamazaki, H. Establishment Of Aluminum “Sash To Sash” Recycling By Using XRT And XRF Sorters. In Proceedings Of The 11th International Conference On Mining, Materials And Petroleum Engineering, Chiang Mai, Thailandia, 11-13 November 2013; Available Online : Http://Mining.Eng.Cmu.Ac.Th/Wp-Content/Uploads/2013/11/Mineral-Material-Processing_5_Paperid-113.Pdf (Accessed On 25 November 2017). [Google Scholar]
  • Takezawa, T.; Uemoto, M.; Itoh, K. Combination Of X-Ray Transmission And Eddy-Current Testing For The Closed-Loop Recycling Of Aluminum Alloys. J. Mater. Cycles Waste Manga. 2015, 17, 84–90. [Crossref] [CrossRef] [Google Scholar]
  • Mesina, M.B.; De Jong, T.P.R.; Dalmijn, W.L. Automatic Sorting Of Scrap Metals With A Combined Electromagnetic And Dual Energy X-Ray Transmission Sensor. Int. J. Miner. Process. 2007, 82, 222–232. [Crossref] [CrossRef] [Google Scholar]
  • Chen, X.-G.; Fortier, M. Tialsi Inter Metallic Formation And Its Impact On The Casting Processing In Al-Si Alloys. J. Mater. Process. Technol. 2010, 210, 1780–1786. [Crossref] [CrossRef] [Google Scholar]
  • Ghomashchi, R. The Evolution Of Altus Inters Metallic Phases In Ti-Added A356 Al-Si Alloy. J. Alloy Compd. 2012, 537, 255–260. [Crossref] [CrossRef] [Google Scholar]
  • Feng, C.F.; Froyen, L. Formation Of Al3Ti And Al2O3 From An Al-Tio2 System For Preparing In-Situ Aluminium Matrix Composites. Compos. Part A Appl. Sci. Manuf. 2000, 31, 385–390. [Crossref] [CrossRef] [Google Scholar]
  • Besson, S.; Pichat, A.; Xolin, E.; Chartrand, P.; Friedrich, B. Improving Coalescence in Al-Recycling By Salt Optimisation. In Proceedings Of The European Metallurgical Conference, Dusseldorf, Germany, 26-29 June 2011; Pp. 1–16. Available Online: Http://Www.Metallurgie.Rwth-Aachen.De/New/Images/Pages/Publikationen/Besson_Emc2011_Id_8928.Pdf (Accessed On 5 January 2018). [Google Scholar]
  • Tenorio, J.A.S.; Espinosa, D.C.R. Effect of Salt/Oxide Interaction On The Process Of Aluminum Recycling. J. Light Met. 2002, 2, 89–93. [Crossref] [CrossRef] [Google Scholar]
  • Majidi, O.; Shabestari, S.G.; Aboutalebi, M.R. Study of Fluxing Temperature in Molten Aluminum Refining Process. J. Mater. Process. Technol. 2007, 182, 450–455. [Crossref] [CrossRef] [Google Scholar]
  • Utigard, T.A.; Friesen, K.; Roy, R.R.; Lim, J.; Silny, A.; Dupuis, C. Properties and Uses Of Fluxes In Molten Aluminum Processing. JOM 1998, 50, 38–43. [Crossref] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.