Open Access
Issue |
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
|
|
---|---|---|
Article Number | 00074 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/bioconf/20249700074 | |
Published online | 05 April 2024 |
- A. Bader, A.M. El, and B. Menai, “Automatic Arabic text summarization : a survey,” Artif. Intell. Rev., 2015, DOI: 10.1007/s10462-015-9442-x. [Google Scholar]
- N. S. Shirwandkar and S. Kulkarni, “Extractive Text Summarization Using Deep Learning,” Proc. - 2018 4th Int. Conf. Comput. Commun. Control Autom. ICCUBEA 2018, pp. 1–5, 2018, DOI: 10.1109/ICCUBEA2018.8697465. [Google Scholar]
- S. K. K and S. Mathew, “SURVEY OF SCIENTIFIC DOCUMENT,” vol. 21, no. 2, pp. 141–177, 2020. [Google Scholar]
- S. Charitha, N. B. Chittaragi, and S. G. Koolagudi, “Extractive Document Summarization Using a Supervised Learning Approach,” 2018 IEEE Distrib. Comput. VLSI, Electr. Circuits Robot. Discov. 2018 - Proc., pp. 7–12, 2019, DOI: 10.1109/DISCOVER.2018.8674133. [Google Scholar]
- S. Song, H. Huang, and T. Ruan, “Abstractive text summarization using LSTM-CNN based deep learning,” Multimed. Tools Appl., 78, no. 1, pp.857–875, 2019, DOI: 10.1007/s11042-018-5749-3. [CrossRef] [Google Scholar]
- A. Rezaei, S. Dami, and P. Daneshjoo, “Multi-Document Extractive Text Summarization via Deep Learning Approach,” 2019 IEEE 5th Conf. [Google Scholar]
- Knowl. Based Eng. Innov. KBEI 2019, pp. 680–685, 2019, DOI: 10.1109/KBEI.2019.8735084. [Google Scholar]
- W. Xiao and G. Carenini, “Extractive summarization of long documents by combining global and local context,” EMNLP-IJCNLP 2019 - 2019 Conf. Empir. Methods Nat. Lang. Process. 9th Int. Jt. Conf. Nat. Lang. Process. Proc. Conf., pp. 3011–3021, 2020, DOI: 10.18653/v1/d19-1298. [Google Scholar]
- R. K. Singh, S. Khetarpaul, R. Gorantla, and S. G. Allada, “SHEG: summarization and headline generation of news articles using deep learning,” Neural Comput. Appl., 2020, DOI: 10.1007/s00521-020-05188-9. [Google Scholar]
- Z. Hao and B. Xue, “2020 5th Asia-Pacific Conference on Intelligent Robot Systems, ACIRS 2020,” 2020 5th Asia-Pacific Conf. Intell. Robot Syst. ACIRS 2020, pp. 163–167, 2020. [Google Scholar]
- M. Yang, C. Li, Y. Shen, Q. Wu, Z. Zhao, and X. Chen, “Hierarchical Human-Like Deep Neural Networks for Abstractive Text Summarization,” IEEE Trans. Neural Networks Learn. Syst., pp. 1–14, 2020, DOI: 10.1109/tnnls.2020.3008037. [Google Scholar]
- A. Srikanth, A. S. Umasankar, S. Thanu, and S. J. Nirmala, “Extractive text summarization using dynamic clustering and co-reference on BERT,” [Google Scholar]
- Proc. 2020 Int. Conf. Comput. Commun. Secur. ICCCS 2020, pp. 0–4, 2020, DOI: 10.1109/ICCCS49678.2020.9277220. [Google Scholar]
- M. Ramina, N. Darnay, C. Ludbe, and A. Dhruv, “Topic level summary generation using BERT induced Abstractive Summarization Model,” Proc. [Google Scholar]
- Int. Conf. Intell. Comput. Control Syst. ICICCS 2020, no. Iciccs, pp. 747–752, 2020, DOI: 10.1109/ICICCS48265.2020.9120997. [Google Scholar]
- P. Vinod, S. Safar, D. Mathew, P. Venugopal, L. M. Joly, and J. George, “Fine-tuning the BERTSUMEXT model for clinical report summarization,” [Google Scholar]
- 2020 Int. Conf. Emerg. Technol. INCET 2020, pp. 1–7, 2020, DOI: 10.1109/INCET49848.2020.9154087. [Google Scholar]
- Y. Zhang, D. Li, Y. Wang, and Y. Fang, “Applied sciences Abstract Text Summarization with a Convolutional Seq2seq Model,” 2019, DOI: 10.3390/app9081665. [Google Scholar]
- A. Al Munzir, “Text analysis for Bengali Text Summarization using Deep Learning,” 2019 10th Int. Conf. Comput. Commun. Netw. Technol., pp. 1–6, 2019. [Google Scholar]
- A. M. Zaki, M. I. Khalil, and H. M. Abbas, “Deep architectures for abstractive text summarization in multiple languages,” Proc. - ICCES 2019 201914th Int. Conf. Comput. Eng. Syst., pp. 22–27, 2019, DOI: 10.1109/ICCES48960.2019.9068171. [Google Scholar]
- L. Wang, J. Yao, Y. Tao, L. Zhong, W. Liu, and Q. Du, “A reinforced topic-aware convolutional sequence-to-sequence model for abstractive textsummarization,” arXiv, pp. 4453–4460, 2018. [Google Scholar]
- S. Yao, “A Comparative Study of Deep Learning Approaches for Query-Focused Extractive,” 2019 IEEE 2nd Int. Conf. Inf. Comput. Technol., pp.153–157, 2019. [Google Scholar]
- G. L. De La Peña Sarracén and P. Rosso, “Automatic text summarization based on betweenness centrality,” ACM Int. Conf. Proceeding Ser., vol. Part F137707, 2018, DOI: 10.1145/3230599.3230611. [Google Scholar]
- Li, Y.; Huang, Y.; Huang, W.; Yu, J.; Huang, Z. An Abstractive Summarization Model Based on Joint-Attention Mechanism and a Priori Knowledge. Appl. Sci. 2023, 13, 4610. https://doi.org/10.3390/app13074610 [CrossRef] [Google Scholar]
- Denny M.J., Spirling A. Text Preprocessing For Unsupervised Learning: Why It Matters, When It Misleads, And What To Do About It. Political Analysis. 2018;26(2):168–189. DOI: 10.1017/pan.2017.44 [Google Scholar]
- Cajueiro, D. O., Nery, A.G., Tavares, I., De Melo, M. K., Reis, S. A. D., Weigang, L., & Celestino, V. R. (2023). A comprehensive review of automatic text summarization techniques: method, data, evaluation and coding. arXiv preprint arXiv:2301.03403. [Google Scholar]
- Belkebir, R., & Guessoum, A. (2018). TALAA-ATSF: a global operation-based arabic text summarization framework. Intelligent Natural Language Processing: Trends andApplications, 435–459. [CrossRef] [Google Scholar]
- El-Kassas, W. S., Salama, C. R., Rafea, A.A., & Mohamed, H. K. (2021). Automatic text summarization: A comprehensive survey. Expert systems with applications, 165, 113679. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.