Open Access
Issue |
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
|
|
---|---|---|
Article Number | 00083 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/bioconf/20249700083 | |
Published online | 05 April 2024 |
- Al-Dulaimi K., Chandran V., Nguyen K., Banks J., Tomeo-Reyes I. Benchmarking hep-2 specimen cells classification using linear discriminant analysis on higher order spectra features of cell shape. Pattern Recogn Lett. 2019;125:534–541. [CrossRef] [Google Scholar]
- Potok T.E., Schuman C., Young S., Patton R., Spedalieri F., Liu J., Yao K.T., Rose G., Chakma G. A study of complex deep learning networks on high-performance, neuromorphic, and quantum computers. ACM J Emerg Technol Comput Syst (JETC). 2018;14(2):1–21 [CrossRef] [Google Scholar]
- LeCun Y., Bengio Y., Hinton G. Deep learning. Nature. 2015;521(7553):436–444. [CrossRef] [PubMed] [Google Scholar]
- Yao G., Lei T., Zhong J. A review of convolutional-neural-network-based action recognition. Pattern Recogn Lett. 2019;118:14–22. [CrossRef] [Google Scholar]
- Dhillon A., Verma G.K. Convolutional neural network: a review of models, methodologies and applications to objectdetection. Prog Artif Intell. 2020; 9(2):85–112. [CrossRef] [Google Scholar]
- O. ElJundi, W. Antoun, N. El Droubi, H. Hajj, W. El-Hajj, and K. Shaban, “Hulmona: The Universal Language Model in Arabic,” no. 1, pp. 68–77, 2019, DOI: 10.18653/v1/w19-4608. [Google Scholar]
- J. Puri, “ARTIFICIAL INTELLIGENCE: A COMPARATIVE STUDY,” Alochana Chakra Journal, vol. IX, no. V, May, p. 9522, 2020. [Google Scholar]
- Eban Escott, “What are the 3 types of AI? A guide to narrow, general, and super artificial intelligence,” Codebots, 2017. third-even-possible (accessed Jun. 04, 2022). [Google Scholar]
- C. Müller and Sarah Guido, Introduction to Machine Learning with Python. 2017. [Google Scholar]
- S. E. Ibrahim, “Predicate Project Outcomes Using Machine Learning,” International Journal of Science and Research (IJSR), vol. 6, no. 6, pp. 1653–1656, 2017. [CrossRef] [Google Scholar]
- S. Ray, “A Comparative Analysis and Testing of Supervised Machine Learning Algorithms,” no. August, 2018, DOI: 10.13140/RG.2.2.16803.60967. [Google Scholar]
- Al-Khayyat, Ebtihal Aziz Mustafa “Building Online an Arabic Word Embedding Model Using Deep Learning.” (2022). [Google Scholar]
- P. Goyal, S. Pandey, and K. Jain, Deep Learning for Natural Language Processing: Creating Neural Networks with Python. Apress, 2018. [Google Scholar]
- S. Wu, W. Ren, C. Yu, G. Chen, D. Zhang and J. Zhu, “Personal recommendation using deep recurrent neural networks in NetEase,” 2016 IEEE 32nd International Conference on Data Engineering (ICDE), 2016, pp. 1218–1229, DOI: 10.1109/ICDE.2016.7498326. [CrossRef] [Google Scholar]
- K. Kumar and G. S. M. Thakur, “Advanced Applications of Neural Networks and Artificial Intelligence: A Review,” International Journal of Information Technology and Computer Science, vol. 4, no. 6, pp. 57–68, 2012. [CrossRef] [Google Scholar]
- J. Heaton, Artificial Intelligence for Humans, Volume 3: Deep Learning and Neural Networks. 2015. [Google Scholar]
- John Paul Mueller and L. Massaron, Deep Learning For Dummies, Vol. 53, no. 9. 2019. [Google Scholar]
- C. E. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation functions: Comparison of trends in practice and research for deep learning,” arXiv, pp. 1–20, 2018 [Google Scholar]
- Sandhya, Yamala. Eswaran, K. Kumar Sahoo, Prasanta (2020). Malaria disease detection using deep learning technique. Journal international journal advance sciences and technology 7736–7745 [Google Scholar]
- J. Kim, H. Cho, J. Pyo, B. Kim and S.-C. Yu, “The convolution neural network based agent vehicle detection using forward-looking sonar image,” OCEANS 2016 MTS/IEEE Monterey, 2016, pp. 1–5, DOI: 10.1109/OCEANS.2016.7761209. [Google Scholar]
- Alex Krizhevsky, Ilya Sutskever, and Georey E. Hinton. Imagenet classication with deep convolutional neural networks. In Advances in neural information processing systems, pages 10971105, 2012. [Google Scholar]
- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In Computer Vision and Pattern Recognition. IEEE, 2009. [Google Scholar]
- Murphy, John. “An overview of convolutional neural network architectures for deep learning.” Microway Inc (2016): 1–22. [Google Scholar]
- Fang W., Love P.E., Luo H., Ding L. Computer vision for behaviour-based safety in construction: a review and future directions. Adv Eng Inform. 2020;43:100980. [CrossRef] [Google Scholar]
- Hubel D.H., Wiesel T.N. Receptive felds, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol. 1962;160(1):106 [CrossRef] [PubMed] [Google Scholar]
- Goodfellow I., Bengio Y., Courville A., Bengio Y. Deep learning, vol. 1. Cambridge: MIT press; 2016. [Google Scholar]
- Alqudah, A.M., Alquraan, H., Qasmieh, I.A. (2019). Segmented and non-segmented skin lesions classification using transfer learning and adaptive moment learning rate technique using pretrained convolutional neural network. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 42: 67–78. [CrossRef] [Google Scholar]
- Alzubaidi, Laith, et al. “Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions.” Journal of big Data 8.1 (2021): 1–74. [CrossRef] [Google Scholar]
- Christian Szegedy, Wei Liue, Yangqing Jia, Pierre Sermanet Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. arXiv preprint arXiv:1409.4842, 2014. [Google Scholar]
- Sriporn, Krit, Tsai, Cheng-Fa, Tsai, Chia-en. Wang, Paohsi (2020). Analyzing malaria disease using effective deep learning approach [Google Scholar]
- Uchida, K.; Tanaka, M.; Okutomi, M. Coupled convolution layer for convolutional neural network. Neural Networks 2018, 105, 197–205. [CrossRef] [PubMed] [CrossRef] [PubMed] [Google Scholar]
- Nasr-Esfahani, E.; Rafiei, S.; Jafari, M.H.; Karimi, N.; Wrobel, J.S.; Samavi, S.; Soroushmehr, S.M.R. Dense pooling layers in fully convolutional network for skin lesion segmentation. Comput. Med. Imaging Graph. 2019, 78, 101658 [CrossRef] [Google Scholar]
- Liu, Q.; Xiang, X.; Qin, J.; Tan, Y.; Tan, J.; Luo, Y. Coverless steganography based on image retrieval of DenseNet features and DWT sequence mapping. Knowl. Based Syst. 2020, 192, 105375. [CrossRef] [Google Scholar]
- Ruder, S. An overview of gradient descent optimization. arXiv 2017, arXiv:1609.04747v2. 35. [Google Scholar]
- Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving neural networks by preventing co-adaptation of feature detectors 2012. arXiv 2012, arXiv:1207.0580. [Google Scholar]
- Kc, K.; Yin, Z.; Wu, M.; Wu, Z. Depthwise separable convolution architectures for plant disease classification. Comput. Electron. Agric. 2019, 165, 104948. [CrossRef] [Google Scholar]
- Duchi, J.C.; Bartlett, P.L.; Wainwright, M.J. Randomized smoothing for (parallel) stochastic optimization. In Proceedings of the 2012 IEEE 51st IEEE Conference on Decision and Control(CDC), Maui, HI, USA, 10-13 December 2012; Institute of Electrical and Electronics Engineers (IEEE); pp. 5442–5444. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.