Open Access
Issue
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
Article Number 00090
Number of page(s) 12
DOI https://doi.org/10.1051/bioconf/20249700090
Published online 05 April 2024
  • Muhammad, S.S., Köhldorfer, P., Leitgeb, E. Channel modeling for terrestrial free space optical links. Proceedings of 2005 7th International Conference on Transparent Optical Networks, ICTON 2005 2005; p. 407–410. DOI: 10.1109/ICTON.2005.1505832. [CrossRef] [Google Scholar]
  • Xu, Z., Chen, G., Abou-Galala, F., Leonardi, M. Experimental performance evaluation of non-line-of-sight ultraviolet communication systems. Free-Space Laser Communications, V.I.I 2007; SPIE: p. 67090Y. DOI: 10.1117/12.735183. [Google Scholar]
  • Komine, T., Nakagawa, M. Fundamental analysis for visible-light communication system using LED lights. IEEE Transactions on Consumer Electronics 2004; 50(1): 100–107. [CrossRef] [Google Scholar]
  • Asadzadeh, K. Efficient, O.F.DM signaling schemes for visible light communication systems. 2011. [Google Scholar]
  • Komine, T., Nakagawa, M. Fundamental Analysis for Visible-Light Communication System using LED Lights. [Google Scholar]
  • Noshad, M., Brandt-Pearce, M. Can Visible Light Communications Provide Gb/s Service? 2013. http://arxiv.org/abs/1308.3217. [Google Scholar]
  • Almer, O., Tsonev, D., Dutton, N.A.W, Al Abbas, T., Videv, S., Gnecchi, S., et al. A SPAD-based visible light communications receiver employing higher order modulation. 2015 IEEE Global Communications Conference, GLOBECOM 2015 2015. DOI: 10.1109/GLOCOM.2014.7417269 DOI: 10.1109/GLOCOM.2014.7417269. [Google Scholar]
  • Armstrong, J. OFDM for optical communications. Journal of Lightwave Technology 2009; p. 189–204. DOI: 10.1109/JLT.2008.2010061. [CrossRef] [Google Scholar]
  • Yu, Z., Baxley, R.J., Tong Zhou, G. RE SE A RCH Open Access, E.V.M and achievable data rate analysis of clipped OFDM signals in visible light communication. http://jwcn.eurasipjournals.com/content/2012/1/321. [Google Scholar]
  • Afgani, M.Z., Haas, H., Elgala, H., Knipp, D. Visible light communication using OFDM. 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities, 2006. TRIDENTCOM 2006. 2006; p. 6--pp. [Google Scholar]
  • Elgala, H., Mesleh, R., Haas, H. Practical considerations for indoor wireless optical system implementation using OFDM. 2009 10th International Conference on Telecommunications 2009; p. 25–29. [Google Scholar]
  • Prince, G.B., Little, T.D.C. On the performance gains of cooperative transmission concepts in intensity modulated direct detection visible light communication networks. Proceedings - 6th International Conference on Wireless and Mobile Communications, ICWMC 2010 2010; p. 297–302. DOI: 10.1109/ICWMC.2010.67. [Google Scholar]
  • Yang, Y., Chen, X., Zhu, L., Liu, B., Chen, H. Design of indoor wireless communication system using LEDs. 2009 Asia Communications and Photonics conference and Exhibition (ACP) 2009; p. 1–8. [Google Scholar]
  • Korakis, T., Lee S.-J., ACM SIGMOBILE., Association for Computing Machinery., International Conference on Mobile Computing and Networking (16th : 2010 : Chicago, I., ACM International Symposium on Mobile Ad Hoc Networking and Computing (2010 : Chicago, I. Proceedings of the Fifth, A.C.M International Workshop on Wireless Network Testbeds, Experimental Evaluation and Characterization : 2010, Chicago, Illinois, USA, September 20-20, 2010. [Google Scholar]
  • Komine, T., Lee, J.H., Haruyama, S., Nakagawa, M. Adaptive equalization system for visible light wireless communication utilizing multiple white led lighting equipment. IEEE Transactions on Wireless Communications 2009; 8(6): 2892–2900. DOI: 10.1109/TWC.2009.060258. [CrossRef] [Google Scholar]
  • Lee, K., Park, H., Barry, J.R. Indoor channel characteristics for visible light communications. IEEE Communications Letters 2011; 15(2): 217–219. DOI: 10.1109/LCOMM.2011.010411.101945. [CrossRef] [Google Scholar]
  • Brussels, E.C.OC 2008 : 2008 34th European conference on Optical Communication : 21-25 September 2008, Brussels, Belgium. [Google Scholar]
  • Institute of Electrical and Electronics Engineers. 2011 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications: PAWR proceedings: 16-19 January 2011: Phoenix, Arizona, USA.. [Google Scholar]
  • Institution of Engineers Australia., Institute of Electrical and Electronics Engineers., IEEE Microwave Theory and Techniques Society. The Asia-Pacific Microwave Conference : 5-8 December 2011, Melbourne Convention Exhibition Centre, Melbourne, Victoria, Australia : conference proceedings. [Google Scholar]
  • Minh, H. Le, O’Brien, D., Faulkner, G., Zeng, L., Lee, K., Jung, D., et al. 100-Mb/s NRZ visible light communications using a postequalized white LED. IEEE Photonics Technology Letters 2009; 21(15): 1063–1065. DOI: 10.1109/LPT.2009.2022413. [CrossRef] [Google Scholar]
  • Neokosmidis, I., Kamalakis, T., Walewski, J.W., Inan, B., Sphicopoulos, T. Impact of nonlinear LED transfer function on discrete multitone modulation: Analytical approach. Journal of Lightwave Technology 2009; 27(22): 4970–4978. DOI: 10.1109/JLT.2009.2028903. [CrossRef] [Google Scholar]
  • Elgala, H., Mesleh, R., Haas, H., Pricope, B. OFDM visible light wireless communication based on white LEDs. 2007 IEEE 65th Vehicular Technology Conference-VTC2007-Spring 2007; p. 2185–2189. [CrossRef] [Google Scholar]
  • Elgala, H., Mesleh, R., Haas, H. A study of LED nonlinearity effects on optical wireless transmission using OFDM. 2009 IFIP international conference on wireless and optical communications networks 2009; p. 1–5. [Google Scholar]
  • Elgala, H., Mesleh, R., Haas, H. An led model for intensity-modulated optical communication systems. IEEE Photonics Technology Letters 2010; 22(11): 835–837. DOI: 10.1109/LPT.2010.2046157. [CrossRef] [Google Scholar]
  • Elgala, H., Mesleh, R., Haas, H. Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs. International Journal of Ultra Wideband Communications and Systems 2009; 1(2): 143–150. [CrossRef] [Google Scholar]
  • Zeng, L., O’Brien, D.C., Le Minh, H., Faulkner, G.E., Lee, K., Jung, D., et al. High data rate Multiple Input Multiple Output (MIMO) optical wireless communications using white LED lighting. IEEE Journal on Selected Areas in Communications 2009; 27(9): 1654–1662. DOI: 10.1109/JSAC.2009.091215. [CrossRef] [Google Scholar]
  • Biagi, M., Vegni, A.M., Pergoloni, S., Butala, P., Little, T.D.C, Biagi, M. Trace-Orthogonal, P.P. M-Space Time Block Coding under Rate Constraints for Visible Light Communication *.. [Google Scholar]
  • 2009 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace and Electronic Systems Technology. [Google Scholar]
  • Tsonev, D., Chun, H., Rajbhandari, S., McKendry, J.J.D., Videv, S., Gu, E., et al. A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μ LED. IEEE Photonics Technology Letters 2014; 26(7): 637–640. DOI: 10.1109/LPT.2013.2297621. [CrossRef] [Google Scholar]
  • Chen, C., Ijaz, M., Tsonev, D., Haas, H. Analysis of Downlink Transmission in DCO-OFDM-Based Optical Attocell Networks. 2014: 2072–2077. [Google Scholar]
  • ICT Platform Society, Han’guk Kwahak Kisul Chŏngbo Yŏn’guwŏn, Institution of Creative Research Professionals, Institute of Electrical and Electronics Engineers. Changwon Section, Institute of Electrical and Electronics Engineers. 2017 International Conference on Platform Technology and Service (PlatCon-17) : proceedings : 13-15 February 2017, Busan, Korea.. [Google Scholar]
  • Lian, J., Brandt-Pearce, M. Clipping-Enhanced Optical, O.F.DM for Visible Light Communication Systems. Journal of Lightwave Technology 2019; 37(13): 3324–3332. DOI: 10.1109/JLT.2019.2915302. [CrossRef] [Google Scholar]
  • Sileh, I.K., Abdulkafi, A.A., Hussein, M.K., Hardan, S.M. Complex signal mapping for improving spectral efficiency of Li-Fi systems. Journal of Telecommunications and Information Technology 2019;(3): 58–62. DOI: 10.26636/jtit.2019.131719. [CrossRef] [Google Scholar]
  • Niu, S., Wang, P., Chi, S., Liu, Z., Pang, W., Guo, L. Enhanced Optical, O.F.DM/OQAM for Visible Light Communication Systems. IEEE Wireless Communications Letters 2021; 10(3): 614–618. DOI: 10.1109/LWC.2020.3040178. [CrossRef] [Google Scholar]
  • Deepthi, S., Visalakshi, P. Enhanced Optical, O.F.DM: A novel approach for SISO and MIMO Visible Light Communication system in indoor environment. Optical and Quantum Electronics 2021; 53(9). DOI: 10.1007/s11082-021-03172-8 DOI: 10.1007/s11082-021-03172-8. [CrossRef] [Google Scholar]
  • Farid, S.M., Saleh, M.Z., Elbadawy, H.M., Elramly, S.H. Novel Unipolar Optical Modulation Techniques for Enhancing Visible Light Communication Systems Performance. IEEE Access 2022; 10: 67925–67939. DOI: 10.1109/ACCESS.2022.3186007. [CrossRef] [Google Scholar]
  • Hu, W.W. Enhanced Performance of Asymmetrically Clipped, D.C.-Biased Optical, O.F.DM Systems Using Adjacent Symbol Detection. IEEE Photonics Journal 2023; 15(6). DOI: 10.1109/JPHOT.2023.3324368 DOI: 10.1109/JPHOT.2023.3324368. [Google Scholar]
  • You, R., Kahn, J.M. Average Power Reduction Techniques for Multiple-Subcarrier Intensity-Modulated Optical Signals.. [Google Scholar]
  • Jiang, T., Wu, Y. An overview: Peak-to-average power ratio reduction techniques for OFDM signals. IEEE Transactions on Broadcasting 2008; 54(2): 257–268. DOI: 10.1109/TBC.2008.915770. [CrossRef] [Google Scholar]
  • Yousefi, M.I., Kschischang, F.R. Information transmission using the nonlinear fourier transform, part II: Numerical methods. IEEE Transactions on Information Theory 2014; 60(7): 4329–4345. DOI: 10.1109/TIT.2014.2321151. [CrossRef] [Google Scholar]
  • Kang, W., Hranilovic, S. Power reduction techniques for multiple-subcarrier modulated diffuse wireless optical channels. IEEE Transactions on Communications 2008; 56(2): 279–288. DOI: 10.1109/TCOMM.2008.060609. [CrossRef] [Google Scholar]
  • Farooqui, M.Z., Saengudomlert, P. Average transmit power reduction through power allocation for OFDM-based indoor wireless optical communications. The 8th Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI) Association of Thailand-Conference 2011 2011; p. 316–319. [CrossRef] [Google Scholar]
  • Nadal, L., Moreolo, M.S., Fabrega, J.M., Junyent, G. Low complexity bit rate variable transponders based on optical OFDM with PAPR reduction capabilities. 2012 17th European conference on networks and optical communications 2012; p. 1–6. [Google Scholar]
  • Popoola, W.O., Ghassemlooy, Z., Stewart, B.G. Pilot-assisted PAPR reduction technique for optical OFDM communication systems. Journal of Lightwave Technology 2014; 32(7): 1374–1382. DOI: 10.1109/JLT.2014.2304493. [CrossRef] [Google Scholar]
  • Yu, Z., Baxley, R.J., Zhou, G.T. Iterative clipping for PAPR reduction in visible light OFDM communications. 2014 IEEE Military Communications Conference 2014; p. 1681–1686. [Google Scholar]
  • Kim, Y.-J., Li, X. A low PAPR visible light communication system employing SC-FDMA technique. Applied Mathematics \& Information Sciences 2013; 7(2): 539–544. [Google Scholar]
  • Yu, Z., Baxley, R.J., Zhou, G.T. Peak-to-average power ratio and illumination-to-communication efficiency considerations in visible light OFDM systems. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing 2013; p. 5397–5401. [CrossRef] [Google Scholar]
  • Zhang, H., Yuan, Y., Xu, W. PAPR Reduction for DCO-OFDM Visible Light Communications via Semidefinite Relaxation. IEEE Photonics Technology Letters 2014; 26(17): 1718–1721. DOI: 10.1109/LPT.2014.2331360. [CrossRef] [Google Scholar]
  • Annual, I.E. EE Computer Conference, Annual, I.E.EE International Symposium on Personal I and MRC 21 2010. 09. 2.-30 I, PIMRC 21 2010.09.26-30 Istanbul. IEEE 21st International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2010 26-30 Sept. 2010, Istanbul, Turkey. [Google Scholar]
  • Susar, A. Ofdm papr reduction with linear coding and codeword modification. 2005. [Google Scholar]
  • Afgani, M.Z., Haas, H., Elgala, H., Knipp, D. Visible Light Communication Using, O.F.DM. [Google Scholar]
  • Gao, Q., Gong, C., Wang, R., Xu, Z., Hua, Y. Constellation design for multi-color visible light communications. ArXiv Preprint ArXiv:14105932. 2014. [Google Scholar]
  • Mao, T., Qian, C., Wang, Q., Quan, J., Wang, Z. PM-DCO-OFDM for PAPR reduction in visible light communications. 2015 opto-electronics and communications conference (OECC) 2015; p. 1–3. [Google Scholar]
  • El-Dolil, S.A., Dessouky, M.I. A New Hybrid, P.A.PR Reduction Technique for OFDM based Visible Light Communication Systems. [Google Scholar]
  • Zhang, T., Yao, J., Guo, S. The Novel, P.A.PR Reduction Schemes for O‐OFDM‐Based Visible Light Communications. Visible Light Communications 2017; InTech: DOI: 10.5772/intechopen.68763 DOI: 10.5772/intechopen.68763. [Google Scholar]
  • Ahmed, M.S. Efficient T-OOFDM System to Mitigate the Dispersion of Long-Haul Optical Fiber Channel at WANs. Tikrit Journal of Engineering Sciences 2018; 25(3): 5–11. DOI: 10.25130/tjes.25.3.02. [CrossRef] [Google Scholar]
  • Mahāwitthayālai Mǣfā Lūang, IEEE Thailand Section., Institute of Electrical and Electronics Engineers. The 21st International Symposium on Wireless Personal Multimedia Communications (WPMC 2018): November 25-28, 2018, Mae Fah Luang University Chiang Rai, Thailand. [Google Scholar]
  • National Institute of Technology (Tiruchchirāppalli I, TEQUIP-III (Program), IEEE Microwave Theory and Techniques Society, Institute of Electrical and Electronics Engineers. Proceedings of the 2019 TEQIP - III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks (IMICPW-2019) : 22nd - 24th May 2019, National Institute of Technology, Tiruchirappalli, India. [Google Scholar]
  • Ahmad, R., Srivastava, A. PAPR Reduction of OFDM Signal through DFT Precoding and GMSK Pulse Shaping in Indoor, V.L.C. IEEE Access 2020; 8: 122092–122103. DOI: 10.1109/ACCESS.2020.3006247. [CrossRef] [Google Scholar]
  • Abdalla, H.F., Hassan, E.S., Dessouky, M.I., Elsafrawey, A.S. Three-Layer, P.A.PR Reduction Technique for FBMC Based, V.L.C Systems. IEEE Access 2021; 9: 102908–102916. DOI: 10.1109/ACCESS.2021.3098776. [CrossRef] [Google Scholar]
  • Elbakry, M.S., Mohammed, A., Ismail, T. Throughput improvement and PAPR reduction for OFDM-based VLC systems using an integrated STC-IMADJS technique. Optical and Quantum Electronics 2022; 54(7). DOI: 10.1007/s11082-022-03802-9 DOI: 10.1007/s11082-022-03802-9. [CrossRef] [Google Scholar]
  • Abdulwali, J., Boussakta, S. Visible Light Communication: An Investigation of LED Non-Linearity Effects on VLC Utilising C-OFDM. Photonics 2022; 9(3). DOI: 10.3390/photonics9030192 DOI: 10.3390/photonics9030192. [CrossRef] [Google Scholar]
  • Farid, S.M., Saleh, M.Z., Elbadawy, H.M., Elramly, S.H. ASCO-OFDM based VLC system throughput improvement using PAPR precoding reduction techniques. Optical and Quantum Electronics 2023; 55(5). DOI: 10.1007/s11082-023-04651-w DOI: 10.1007/s11082-023-04651-w. [CrossRef] [Google Scholar]
  • Carruthers, J.B., Carroll, S.M., Kannan, P. Propagation modelling for indoor optical wireless communications using fast multi-receiver channel estimation. IEE Proceedings: Optoelectronics 2003; 150(5): 473–481. DOI: 10.1049/ip-opt:20030527. [CrossRef] [Google Scholar]
  • Guvenc, I., Gezici, S., Sahinoglu, Z., Kozat, U.C. Reliable communications for short-range wireless systems. [Google Scholar]
  • Coleri, S., Ergen, M., Puri, A., Bahai, A. Channel estimation techniques based on pilot arrangement in OFDM systems. IEEE Transactions on Broadcasting 2002; 48(3): 223–229. DOI: 10.1109/TBC.2002.804034. [CrossRef] [Google Scholar]
  • Institute of Electrical and Electronics Engineers. Proceedings of CSNDSP 2012 : 2012 8th International Symposium on Communication Systems, Networks & Digital Signal Processing : 18-20 July 2012, Poznan University of Technology, Poznan, Poland. [Google Scholar]
  • Institute of Electrical and Electronics Engineers. 2014 Inegrated Communications, Navigationa dn Surveillance Conference : (ICNS 2014) : Herndon, Virginia, USA, 8-10 April 2014. [Google Scholar]
  • Lin, W.F., Chow, C.W., Yeh, C.H. Using specific and adaptive arrangement of grid-type pilot in channel estimation for white-lightLED-based OFDM visible light communication system. Optics Communications 2015; 338: 7–10. DOI: 10.1016/j.optcom.2014.09.080. [CrossRef] [Google Scholar]
  • Qian, H., Cai, S., Yao, S., Zhou, T., Yang, Y., Wang, X. On the benefit of DMT modulation in nonlinear VLC systems. Optics Express 2015; 23(3): 2618. DOI: 10.1364/oe.23.002618. [CrossRef] [PubMed] [Google Scholar]
  • Acar, Y., Doʇan, H., Panayirci, E. On channel estimation for spatial modulated systems over time-varying channels. Digital Signal Processing: A Review Journal 2015; 37(1): 43–52. DOI: 10.1016/j.dsp.2014.11.004. [CrossRef] [Google Scholar]
  • Li, Y., Tao, C., Liu, L., Seco-Granados, G., Swindlehurst, A.L. Channel estimation and uplink achievable rates in one-bit massive MIMO systems. 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM) 2016; p. 1–5. [Google Scholar]
  • Bayat, O., Aljawarneh, S., Carlak, H.F., International Association of Researchers, Institute of Electrical and Electronics Engineers, Akdeniz Üniversitesi. Proceedings of 2017 International Conference on Engineering & Technology (ICET’2017) : Akdeniz University, Antalya, Turkey, 21-23 August, 2017. [Google Scholar]
  • Saci, A., Al-Dweik, A., Shami, A., Iraqi, Y. One-shot blind channel estimation for OFDM systems over frequency-selective fading channels. IEEE Transactions on Communications 2017; 65(12): 5445–5458. DOI: 10.1109/TCOMM.2017.2740925. [CrossRef] [Google Scholar]
  • Mohammed, A.A. OFDM Channel Estimation Enhancement using Null Subcarriers. Tikrit Journal of Engineering Sciences 2018; 25(1): 12–17. DOI: 10.25130/tjes.25.1.03. [CrossRef] [Google Scholar]
  • Őzmen, A., Şenol, H. Channel Estimation for Realistic Indoor Optical Wireless Communication in ACO-OFDM Systems. Wireless Personal Communications 2018; 102(1): 247–259. DOI: 10.1007/s11277-018-5837-8. [CrossRef] [Google Scholar]
  • Carrera, D.F., Vargas-Rosales, C., Azpilicueta, L., Galaviz-Aguilar, J.A. Comparative study of channel estimators for massive MIMO 5G NR systems. IET Communications 2020; 14(7): 1175–1184. DOI: 10.1049/iet-com.2019.0973. [CrossRef] [Google Scholar]
  • Bektas, E.B., Panayirci, E. Sparse Channel Estimation for DCO-OFDM VLC Systems in the Presence of Clipping Noise. 2021. DOI: 10.21203/rs.3.rs-380210/v1 DOI: 10.21203/rs.3.rs-380210/v1. [Google Scholar]
  • El-Ganiny, M.Y., Khalaf, A.A.M, Hussein, A.I., Hamed, H.F.A. A proposed preamble channel estimation scheme for flip FBMC-based indoor VLC systems. Opto-Electronics Review 2022; 30(1). DOI: 10.24425/opelre.2022.140859 DOI: 10.24425/opelre.2022.140859. [Google Scholar]
  • Mou, Y., Liu, S. Channel Estimation for Underwater Visible Light Communication: A Sparse Learning Perspective. 2023. http://arxiv.org/abs/2303.07248. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.