Open Access
Issue |
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
|
|
---|---|---|
Article Number | 00099 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/bioconf/20249700099 | |
Published online | 05 April 2024 |
- Rastogi, A., & Mehrotra, M. (2017). Opinion spam detection in online reviews. Journal of Information & Knowledge Management, 16(04), 1750036. [CrossRef] [Google Scholar]
- Shilpa Yadav and K.M. Gulbakshee Dharmela, “Fake Review Detection Using Machine Learning Techniques,” J. Emerg. Technol. Innov. Res., vol. 8, no. 4, 2021. [Google Scholar]
- Le, H., & Kim, B. (2020). Detection of fake reviews on social media using machine learning algorithms. Issues In Information Systems, 21(1), 185–194. [Google Scholar]
- Patel, N.A., & Patel, R. (2018, December). A survey on fake review detection using machine learning techniques. In 2018 4th international Conference on computing Communication and automation (ICCCA) (pp. 1–6). IEEE. [Google Scholar]
- Salminen, J., Kandpal, C., Kamel, A.M., Jung, S.G., & Jansen, B.J. (2022). Creating and detecting fake reviews of online products. Journal of Retailing and Consumer Services, 64, 102771. [CrossRef] [Google Scholar]
- Mohawesh, R., Xu, S., Tran, S.N., Ollington, R., Springer, M., Jararweh, Y., & Maqsood, S. (2021). Fake reviews detection: A survey. IEEE Access, 9, 65771–65802. [CrossRef] [Google Scholar]
- S. Farooq and H.A. Khanday, “Opinion Spam Detection: A Review,” Int. J. Eng. Res., vol. 12, no. 4, pp. 1–08, 2016, [Online]. Available: www.ijerd.com [Google Scholar]
- N. Jindal and B. Liu, “Opinion spam and analysis,” WSDM’08 - Proc. 2008 Int. Conf. Web Search Data Min., pp. 219–229, 2008, doi: 10.1145/1341531.1341560. [Google Scholar]
- N. Jindal and B. Liu, “Review spam detection,” 16th Int. World Wide Web Conf. WWW2007, pp. 1189–1190, 2007, doi: 10.1145/1242572.1242759. [CrossRef] [Google Scholar]
- Liu, P., Xu, Z., Ai, J., & Wang, F. (2017, July). Identifying indicators of fake reviews based on spammer's behavior features. In 2017 IEEE international conference on software quality, reliability and security companion (QRS-C) (pp. 396–403). IEEE. [CrossRef] [Google Scholar]
- Fontanarava, J., Pasi, G., & Viviani, M. (2017, October). Feature analysis for fake review detection through supervised classification. In 2017 IEEE international conference on data science and advanced Analytics (DSAA) (pp. 658–666). IEEE. [CrossRef] [Google Scholar]
- S. Rayana and L. Akoglu, “Collective opinion spam detection: Bridging review networks and metadata,” Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., vol. 2015-Augus, pp. 985–994, 2015, doi: 10.1145/2783258.2783370. [Google Scholar]
- R. Agarwal and D.K. Sharma, “Detecting Fake Reviews using Machine learning techniques: a survey,” 2022 2nd Int. Conf. Adv. Comput. Innov. Technol. Eng. ICACITE 2022, pp. 1750–1756, 2022, doi: 10.1109/ICACITE53722.2022.9823633. [Google Scholar]
- J. Luo, J. Luo, G. Nan, and D. Li, “Fake review detection system for online E-commerce platforms: A supervised general mixed probability approach,” Decis. Support Syst., no. June, p. 114045, 2023, doi: 10.1016/j.dss.2023.114045. [CrossRef] [Google Scholar]
- D.U. Vidanagama, T.P. Silva, and A.S. Karunananda, “Deceptive consumer review detection: a survey,” Artif. Intell. Rev., vol. 53, no. 2, pp. 1323–1352, 2020, doi: 10.1007/s10462-019-09697-5. [CrossRef] [Google Scholar]
- M. Crawford, T.M. Khoshgoftaar, J.D. Prusa, A.N. Richter, and H. Al Najada, “Survey of review spam detection using machine learning techniques,” J. Big Data, vol. 2, no. 1, 2015, doi: 10.1186/s40537-015-0029-9. [CrossRef] [Google Scholar]
- A.M. Elmogy, U. Tariq, A. Ibrahim, and A. Mohammed, “Fake Reviews Detection using Supervised Machine Learning,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 1, pp. 601–606, 2021, doi: 10.14569/IJACSA.2021.0120169. [Google Scholar]
- J.K. Rout, S. Singh, S.K. Jena, and S. Bakshi, “Deceptive review detection using labeled and unlabeled data,” Multimed. Tools Appl., vol. 76, no. 3, pp. 3187–3211, 2016, doi: 10.1007/s11042-016-3819-y. [Google Scholar]
- S. Banerjee, A.Y.K. Chua, and J.J. Kim, “Using supervised learning to classify authentic and fake online reviews,” ACM IMCOM 2015 - Proc., 2015, doi: 10.1145/2701126.2701130. [Google Scholar]
- Etaiwi, W., & Naymat, G. (2017). The impact of applying different preprocessing steps on review spam detection. Procedia computer science, 113, 273–279. [CrossRef] [Google Scholar]
- Silpa, C., Prasanth, P., Sowmya, S., Bhumika, Y., Pavan, C.S., & Naveed, M. (2023, March). Detection of Fake Online Reviews by using Machine Learning. In 2023 International Conference on Innovative Data Communication Technologies and Application (ICIDCA) (pp. 71–77). IEEE. [CrossRef] [Google Scholar]
- S.N. Alsubari et al., “Data analytics for the identification of fake reviews using supervised learning,” Comput. Mater. Contin., vol. 70, no. 2, pp. 3189–3204, 2022, doi: 10.32604/cmc.2022.019625. [Google Scholar]
- F. Setievi, J. Natalia, T.R. Tjhang, I.S. Edbert, and D. Suhartono, “A Comparative Study of Supervised Machine Learning Algorithms for Fake Review Detection,” 2022 5th Int. Semin. Res. Inf. Technol. Intell. Syst. ISRITI 2022, pp. 306–312, 2022, doi: 10.1109/ISRITI56927.2022.10052860. [Google Scholar]
- Barbado, R., Araque, O., & Iglesias, C.A. (2019). A framework for fake review detection in online consumer electronics retailers. Information Processing & Management, 56(4), 1234–1244. [CrossRef] [Google Scholar]
- Badresiya, M.A., & Teraiya, J. (2014). Performance analysis of supervised techniques for review spam detection. Int J Adv Netw Appl Special, (21–24). [Google Scholar]
- H. Taneja and S. Kaur, “An ensemble classification model for fake feedback detection using proposed labeled CloudArmor dataset,” Comput. Electr. Eng., vol. 93, no. July, p. 107217, 2021, doi: 10.1016/j.compeleceng.2021.107217. [CrossRef] [Google Scholar]
- J. Wang, H. Kan, F. Meng, Q. Mu, G. Shi, and X. Xiao, “Fake Review Detection Based on Multiple Feature Fusion and Rolling Collaborative Training,” vol. 8, 2020, doi: 10.1109/ACCESS.2020.3028588. [Google Scholar]
- Hassan, R., & Islam, M.R. (2020, December). A supervised machine learning approach to detect fake online reviews. In 2020 23rd international conference on computer and information technology (ICCIT) (pp. 1–6). IEEE. [Google Scholar]
- Liu, Y., Wang, L., Shi, T., & Li, J. (2022). Detection of spam reviews through a hierarchical attention architecture with N-gram CNN and Bi-LSTM. Information Systems, 103, 101865. [CrossRef] [Google Scholar]
- Nasir, J.A., Khan, O.S., & Varlamis, I. (2021). Fake news detection: A hybrid CNN-RNN based deep learning approach. International Journal of Information Management Data Insights, 1(1), 100007. [CrossRef] [Google Scholar]
- Sahut, J.M., & Hajek, P. (2022). Mining behavioural and sentiment-dependent linguistic patterns from restaurant reviews for fake review detection. [Google Scholar]
- Ott, M., Choi, Y., Cardie, C., & Hancock, J.T. (2011). Finding deceptive opinion spam by any stretch of the imagination. arXiv preprint arXiv:1107.4557. [Google Scholar]
- Li, J., Ott, M., Cardie, C., & Hovy, E. (2014, June). Towards a general rule for identifying deceptive opinion spam. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 1566–1576). [Google Scholar]
- Sedighi, Z., Ebrahimpour-Komleh, H., & Bagheri, A. (2017, December). RLOSD: Representation learning based opinion spam detection. In 2017 3rd Iranian Conference on Intelligent Systems and Signal Processing (ICSPIS) (pp. 74–80). IEEE. [CrossRef] [Google Scholar]
- Dong, L.Y., Ji, S.J., Zhang, C.J., Zhang, Q., Chiu, D.W., Qiu, L.Q., & Li, D. (2018). An unsupervised topic-sentiment joint probabilistic model for detecting deceptive reviews. Expert Systems with Applications, 114, 210–223. [CrossRef] [Google Scholar]
- Mukherjee, A., & Venkataraman, V. (2014). Opinion spam detection: An unsupervised approach using generative models. Techincal Report, UH. [Google Scholar]
- Kumar, N., Venugopal, D., Qiu, L., & Kumar, S. (2019). Detecting anomalous online reviewers: An unsupervised approach using mixture models. Journal of Management Information Systems, 36(4), 1313–1346. [CrossRef] [Google Scholar]
- Singh, S. (2015). Improved techniques for online review spam detection (Doctoral dissertation). [Google Scholar]
- Li, J., Lv, P., Xiao, W., Yang, L., & Zhang, P. (2021). Exploring groups of opinion spam using sentiment analysis guided by nominated topics. Expert Systems with Applications, 171, 114–585. [Google Scholar]
- Koggalahewa, D., Xu, Y., & Foo, E. (2022). An unsupervised method for social network spammer detection based on user information interests. Journal of Big Data, 9(1), 1–35. [CrossRef] [Google Scholar]
- Zhong, M., Tan, L., & Qu, X. (2019). Identification of opinion spammers using reviewer reputation and clustering analysis. International Journal of Computers Communications & Control, 14(6), 759–772. [Google Scholar]
- Pan, Y., & Xu, L. (2024). Detecting Fake Online Reviews: An Unsupervised Detection Method With a Novel Performance Evaluation. International Journal of Electronic Commerce, 1–24. [Google Scholar]
- Abutiheen, Z.A., Mohammed, E.A., & Hussein, M.H. (2022). Behavior analysis in Arabic social media. International Journal of Speech Technology, 25(3), 659–666. [CrossRef] [Google Scholar]
- Hai, Z., Zhao, P., Cheng, P., Yang, P., Li, X.L., & Li, G. (2016, November). Deceptive review spam detection via exploiting task relatedness and unlabeled data. In Proceedings of the 2016 conference on empirical methods in natural language processing (pp. 1817–1826). [CrossRef] [Google Scholar]
- Rout, J.K., Dalmia, A., Choo, K.K.R., Bakshi, S., & Jena, S.K. (2017). Revisiting semi-supervised learning for online deceptive review detection. IEEE access, 5, 1319–1327. [CrossRef] [Google Scholar]
- Tian, Y., Mirzabagheri, M., Tirandazi, P., & Bamakan, S.M.H. (2020). A non-convex semi-supervised approach to opinion spam detection by ramp-one class SVM. Information Processing & Management, 57(6), 102381. [CrossRef] [Google Scholar]
- Ligthart, A., Catal, C., & Tekinerdogan, B. (2021). Analyzing the effectiveness of semi-supervised learning approaches for opinion spam classification. Applied Soft Computing, 101, 107023. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.