Open Access
Issue
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
Article Number 00105
Number of page(s) 18
DOI https://doi.org/10.1051/bioconf/20249700105
Published online 05 April 2024
  • K. Greene, “TR10: Software-defined networking,” ed: MIT Technology Review Cambridge, MA, USA, 2009. [Google Scholar]
  • M. Harouni, M. Karimi, A. Nasr, H. Mahmoudi, and Z. Arab Najafabadi, “Health monitoring methods in heart diseases based on data mining approach: A directional review,” in Prognostic models in healthcare: Ai and statistical approaches: Springer, 2022, pp. 115–159. [CrossRef] [Google Scholar]
  • B. Lakshmi Narayan, S. Rai, and P.N. Hamsavath, “Network De-materialization in Open Flow Network.” [Google Scholar]
  • M. Bhuyan, S. Kashihara, D. Fall, Y. Taenaka, and Y. Kadobayashi, “A survey on blockchain, SDN and NFV for the smart-home security,” Internet of Things, p. 100588, 2022. [Google Scholar]
  • M.H. Rehmani, A. Davy, B. Jennings, and C. Assi, “Software defined networks-based smart grid communication: A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2637–2670, 2019. [CrossRef] [Google Scholar]
  • A. Raftarai, R.R. Mahounaki, M. Harouni, M. Karimi, and S.K. Olghoran, “Predictive models of hospital readmission rate using the improved AdaBoost in COVID-19,” in Intelligent Computing Applications for COVID-19: CRC Press, 2021, pp. 67–86. [CrossRef] [Google Scholar]
  • A.J. Moshayedi et al., “E-Nose design and structures from statistical analysis to application in robotic: a compressive review,” EAI Endorsed Transactions on AI and Robotics, vol. 2, no. 1, pp. e1–e1, 2023. [CrossRef] [Google Scholar]
  • A. Moubayed, A. Refaey, and A. Shami, “Software-defined perimeter (sdp): State of the art secure solution for modern networks,” IEEE network, vol. 33, no. 5, pp. 226–233, 2019. [CrossRef] [Google Scholar]
  • Z. Latif, K. Sharif, F. Li, M.M. Karim, S. Biswas, and Y. Wang, “A comprehensive survey of interface protocols for software defined networks,” Journal of Network and Computer Applications, vol. 156, p. 102563, 2020. [CrossRef] [Google Scholar]
  • B. Goswami, M. Kulkarni, and J. Paulose, “A Survey on P4 Challenges in Software Defined Networks: P4 Programming,” IEEE Access, 2023. [Google Scholar]
  • S. Azodolmolky, Software defined networking with OpenFlow. Packt Publishing, 2013. [Google Scholar]
  • R. Swami, M. Dave, and V. Ranga, “Software-defined networking-based DDoS defense mechanisms,” ACM Computing Surveys (CSUR), vol. 52, no. 2, pp. 1–36, 2019. [Google Scholar]
  • M. Chouikik, M. Ouaissa, M. Ouaissa, Z. Boulouard, and M. Kissi, “Impact of DoS attacks in software defined networks,” in AIP Conference Proceedings, 2023, vol. 2814, no. 1: AIP Publishing. [Google Scholar]
  • J. López, C. Chatzinakis, M. Cartigny, and C. Poletti, “Software defined networking flow admission and routing under minimal security constraints,” arXiv preprint arXiv:2307.11879, 2023. [Google Scholar]
  • J. Goor, “Log Parsing in Software-Defined Networking to generate DyNetKAT models,” University of Twente, 2023. [Google Scholar]
  • A. Nunez, J. Ayoka, M.Z. Islam, and P. Ruiz, “A Brief Overview of Software-Defined Networking,” arXiv preprint arXiv:2302.00165, 2023. [Google Scholar]
  • S.K. Keshari, V. Kansal, S. Kumar, and N.R. Roy, “A Review of Deterministic and Non-deterministic Load Balancing Mechanisms in Software Defined Networks,” in 2023 13th International Conference on Cloud Computing, Data Science & Engineering (Confluence), 2023, pp. 305–310: IEEE. [Google Scholar]
  • M. Hassan, M. Gregory, and S. Li, “Multi-Domain Federation utilising Software Defined Networking: a Review,” IEEE Access, 2023. [Google Scholar]
  • Y. Wang and I. Matta, “Sdn management layer: Design requirements and future direction,” in 2014 IEEE 22nd International Conference on Network Protocols, 2014, pp. 555–562: IEEE. [CrossRef] [Google Scholar]
  • J. Ali, R.H. Jhaveri, M. Alswailim, and B.-h. Roh, “ESCALB: An effective slave controller allocationbased load balancing scheme for multi-domain SDN-enabled-IoT networks,” Journal of King Saud University-Computer and Information Sciences, vol. 35, no. 6, p. 101566, 2023. [CrossRef] [Google Scholar]
  • J. Gao, W. Wu, M. Li, C. Zhou, and W. Zhuang, “Holistic Network Virtualization and Pervasive Network Intelligence for 6G,” arXiv preprint arXiv:2301.00519, 2023. [Google Scholar]
  • L. Golightly, P. Modesti, R. Garcia, and V. Chang, “Securing Distributed Systems: A Survey on Access Control Techniques for Cloud, Blockchain, IoT and SDN,” Cyber Security and Applications, p. 100015, 2023. [CrossRef] [Google Scholar]
  • J. Mao, B. Han, Z. Sun, X. Lu, and Z. Zhang, “Efficient mismatched packet buffer management with packet order-preserving for OpenFlow networks,” Computer Networks, vol. 110, pp. 91–103, 2016. [CrossRef] [Google Scholar]
  • U. Javed, A. Iqbal, S. Saleh, S.A. Haider, and M.U. Ilyas, “A stochastic model for transit latency in OpenFlow, S.D.Ns,” Computer Networks, vol. 113, pp. 218–229, 2017. [CrossRef] [Google Scholar]
  • A. Liatifis, P. Sarigiannidis, V. Argyriou, and T. Lagkas, “Advancing sdn from openflow to p4: A survey,” ACM Computing Surveys, vol. 55, no. 9, pp. 1–37, 2023. [Google Scholar]
  • N. Satheesh et al., “Flow-based anomaly intrusion detection using machine learning model with software defined networking for OpenFlow network,” Microprocessors and Microsystems, vol. 79, p. 103285, 2020. [CrossRef] [Google Scholar]
  • R. Wazirali, R. Ahmad, and S. Alhiyari, “SDN-openflow topology discovery: An overview of performance issues,” Applied Sciences, vol. 11, no. 15, p. 6999, 2021. [CrossRef] [Google Scholar]
  • J.R. de Almeida Amazonas, G. Santos-Boada, and J. Solé-Pareta, “A critical review of OpenFlow/SDNbased networks,” in 2014 16th International Conference on Transparent Optical Networks (ICTON), 2014, pp. 1–5: IEEE. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.