Open Access
Issue
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
Article Number 00111
Number of page(s) 12
DOI https://doi.org/10.1051/bioconf/20249700111
Published online 05 April 2024
  • Kruckeberg, A.R. (2004). Geology and plant life: the effects of landforms and rock types on plants. University of Washington Press. [Google Scholar]
  • Gutierrez, F., Parise, M., De Waele, J., & Jourde, H. (2014). A review on natural and human-induced geohazards and impacts in karst. Earth-Science Reviews, 138, 61–88. [CrossRef] [Google Scholar]
  • Guth, P.L., Van Niekerk, A., Grohmann, C.H., Muller, J.P., Hawker, L., Florinsky, I.V., … & Strobl, P. (2021). Digital elevation models: terminology and definitions. Remote Sensing, 13(18), 3581. [CrossRef] [Google Scholar]
  • Lawhead, J. (2019). Learning Geospatial Analysis with Python: Understand, G.I.S fundamentals and perform remote sensing data analysis using Python 3.7. Packt Publishing Ltd. [Google Scholar]
  • Farmakis, I., Karantanellis, E., Hutchinson, D.J., Vlachopoulos, N., & Marinos, V. (2022). Superpixel and supervoxel segmentation assessment of landslides using UAV-derived models. Remote Sensing, 14(22), 5668. [CrossRef] [Google Scholar]
  • Rigol-Sanchez, J.P., Stuart, N., & Pulido-Bosch, A. (2015). ArcGeomorphometry: a toolbox for geomorphometric characterisation of DEMs in the ArcGIS environment. Computers & Geosciences, 85, 155–163. [CrossRef] [Google Scholar]
  • Bullejos, M., Cabezas, D., Martfn-Martfn, M., & Alcala, F.J. (2022). A Python Application for Visualizing the 3D Stratigraphic Architecture of the Onshore Llobregat River Delta in NE Spain. Water, 14(12), 1882. [CrossRef] [Google Scholar]
  • Lemenkova, P., & Debeir, O. (2022). Satellite Image Processing by Python and R Using Landsat 9 OLI/TIRS and SRTM DEM Data on Cote d'Ivoire, West Africa. Journal of imaging, 8(12), 317. [CrossRef] [PubMed] [Google Scholar]
  • Tomas, L.R., Soares, G.G., Jorge, A.A., Mendes, J.F., Freitas, V.L., & Santos, L.B. (2022). Flood risk map from hydrological and mobility data: A case study in Sao Paulo (Brazil). Transactions in GIS, 26(5), 2341–2365. [CrossRef] [Google Scholar]
  • Lyon, J.G., & Lyon, L. (Eds.). (2022). Geospatial Information Handbook for Water Resources and Watershed Management, Volume, I.I.: Methods and Modelling. CRC Press. [Google Scholar]
  • Fiechter, J.A. (2019). Development and Deployment of a Field Based Soil Mapping Tool Using a Comparative Evaluation of Geostatistics and Machine Learning (Doctoral dissertation, Purdue University). [Google Scholar]
  • Wang, Z., Du, Z., Li, X., Bao, Z., Zhao, N., & Yue, T. (2021). Incorporation of high accuracy surface modeling into machine learning to improve soil organic matter mapping. Ecological Indicators, 129, 107975. [CrossRef] [Google Scholar]
  • Wieder, P., & Nolte, H. (2022). Toward data lakes as central building blocks for data management and analysis. Frontiers in big Data, 5, 945720. [CrossRef] [PubMed] [Google Scholar]
  • Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., & Brisco, B. (2020). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 164, 152–170. [CrossRef] [Google Scholar]
  • Tatum, W.K., Torrejon, D., O'Neil, P., Onorato, J.W., Resing, A.B., Holliday, S., … & Luscombe, C.K. (2020). Generalizable framework for algorithmic interpretation of thin film morphologies in scanning probe images. Journal of Chemical Information and Modeling, 60(7), 3387–3397. [CrossRef] [PubMed] [Google Scholar]
  • Shi, X., Schmidt, M., Martin, C.J., Billett, D.D., Bland, E., Tholley, F.H., … & McWilliams, K. (2022). pyDARN: A Python software for visualizing SuperDARN radar data. Frontiers in Astronomy and Space Sciences, 9, 381. [CrossRef] [Google Scholar]
  • Jing, W., Yang, Y., Yue, X., & Zhao, X. (2016). A spatial downscaling algorithm for satellite-based precipitation over the Tibetan plateau based on NDVI, DEM, and land surface temperature. Remote Sensing, 8(8), 655. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.