Open Access
Issue
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
Article Number 00113
Number of page(s) 18
DOI https://doi.org/10.1051/bioconf/20249700113
Published online 05 April 2024
  • H. Alkattan, M. Abotaleb, A. Ali Subhi, O.A. Adelaja, A. Kadi and H.K. Ibrahim Al-Mahdawi, “The prediction of students' academic performances with a classification model built using data mining techniques,” 6th Smart Cities Symposium (SCS 2022), Hybrid Conference, Bahrain, 2022, pp. 353–356, doi: 10.1049/icp.2023.0577. [CrossRef] [Google Scholar]
  • Al-Nuaimi, B.T., Al-Mahdawi, H.K., Albadran, Z., Alkattan, H., Abotaleb, M., & Elkenawy, E.S.M. (2023). Solving of the inverse boundary value problem for the heat conduction equation in two intervals of time. Algorithms, 16(1), 33. [CrossRef] [Google Scholar]
  • M. Abotaleb, T. Makarovskikh, A. Ali Subhi, H. Alkattan and A.O. Adebayo, “Forecasting and modeling on average rainwater and vapor pressure in Chelyabinsk Russia using deep learning models,” 6th Smart Cities Symposium (SCS 2022), Hybrid Conference, Bahrain, 2022, pp. 362–367, doi: 10.1049/icp.2023.0582. [CrossRef] [Google Scholar]
  • Al-Mahdawi, H.K., Albadran, Z., Alkattan, H., Abotaleb, M., Alakkari, K., & Ramadhan, A.J. (2023, December). Using the inverse Cauchy problem of the Laplace equation for wave propagation to implement a numerical regularization homotopy method. AIP Conference Proceedings (Vol. 2977, No. 1). AIP Publishing. [Google Scholar]
  • Borkar, P. 2015. “Study on modelling and forecasting of coconut production in India”. International Journal of Tropical Agri-culture 33(2): 1765–1769. [Google Scholar]
  • Brintha, N.K.K., Samita, S., Abeynayake, N.R., Idirisinghe, I.M.S.K. Kumarathunga, A.M.D.P. 2014. “Use of unobserved components model for forecasting non-stationary time series: a case of annual national coconut production in Sri Lanka”. Tropical Agricultural Research 25(4): 523–531. [Google Scholar]
  • Chatfield, C. 2003. “The analysis of time series: an introduction”. Chapman and Hall/CRC. [CrossRef] [Google Scholar]
  • Frain, J. 1992. “Lecture notes on univariate time series analysis and box jenkins forecasting”. Economic Analysis, Research and Publications. [Google Scholar]
  • Gunasekaran, K., Kumar, P.S. Lakshmipathy, M. 2011. “Mechanical and bond properties of coconut shell concrete”. Construction and building materials 25(1): 92–98. https://doi.org/10.1007/s42107-018-0091-7 [CrossRef] [Google Scholar]
  • Holt, C.E., 1957. “Forecasting seasonals and trends by exponentially weighted averages” (O.N.R. Memorandum No. 52). Carnegie Institute of Technology, Pittsburgh, U.S.A [Google Scholar]
  • Kalidas, K., Darthiya, M., Malathi, P. Thomas, L. 2014. “Organic coconut cultivation in India- problems and prospects”. Integrated Journal of Scientific Research, 3 (6): 14–15. [Google Scholar]
  • Kirchgässner, G., Wolters, J., Hassler, U. 2012. “Introduction to modern time series analysis”. Springer Science & Business Media. [Google Scholar]
  • Kumar, S.N. Aggarwal, P.K. 2013. “Climate change and coconut plantations in India: Impacts and potential adaptation gains”. Agricultural Systems, 117: 45–54. https://doi.org/10.1016/j.agsy.2013.01.001 [CrossRef] [Google Scholar]
  • Lafarga Tomás. 2021. “Production and Consumption of Oils and Oilseeds.” Oil and Oilseed Processing: Opportunities and Challenges1-21. https://doi.org/10.1002/9781119575313.ch1 [CrossRef] [Google Scholar]
  • Lathika, M. 2002. “Productivity of coconut cultivation in Kerala”. Ph.D. Thesis submitted to Mahatma Gandhi University, Kerala, India. [Google Scholar]
  • T. Makarovskikh, A. Salah, A. Badr, A. Kadi, H. Alkattan and M. Abotaleb, “Automatic classification Infectious disease X-ray images based on Deep learning Algorithms,” 2022 VIII International Conference on Information Technology and Nanotechnology (ITNT), Samara, Russian Federation, 2022, pp. 1–6, doi: 10.1109/ITNT55410.2022.9848538. [Google Scholar]
  • Lim, C.T. 2015. “Forecasting coconut production in the Philippines with ARIMA model”. AIP Conference Proceedings 1643 (1): 86. https://doi.org/10.1063/1.4907429 [CrossRef] [Google Scholar]
  • Liu, Ruijie, et al. 2019. “Effects of chemical refinement on the quality of coconut oil.” Journal of food science and technology 56.6: 3109–3116. https://doi.org/10.1007/s13197-019-03810-w [CrossRef] [PubMed] [Google Scholar]
  • Makarovskikh, T., Abotaleb, M. 2021. “Comparison Between Two Systems for Forecasting Covid-19 Infected Cases. In: Byrski, A., Czachórski, T., Gelenbe, E., Grochla, K., Murayama, Y. (eds) Computer Science Protecting Human Society Against Epidemics. ANTICOVID” 2021. IFIP Advances in Information and Communication Technology 616. https://doi.org/10.1007/978-3-030-86582-5_10 [Google Scholar]
  • Makarovskikh, T.A., Abotaleb, M.S.A. “Automatic Selection of ARIMA Model Parameters to Forecast, C.O.VID-19 Infection and Death Cases”. Bulletin of the South Ural State University. Series: Computational Mathematics and Software Engineering. 2021. Vol. 10, no. 2. P. 20–37. (in Russian). DOI: http://doi.org/10.14529/cmse210202 [Google Scholar]
  • Mishra, P., Matuka, A., Abotaleb, M.S.A., Weerasinghe, W.P.M.C.N., Karakaya, K., Das, S.S. 2021. “Modeling and forecasting of milk production in the SAARC countries and China”. Modeling Earth Systems and Environment 1–13. [Google Scholar]
  • Mishra, P., Matuka, A., Abotaleb, M.S., Weerasinghe, W.P., Karakaya, K., Das, S.S. “Modeling and forecasting of milk production in the SAARC countries and China”. Modeling Earth Systems and Environment. 2021:1–3. [Google Scholar]
  • Mishra, P., Yonar, A., Yonar, H., Kumari, B., Abotaleb, M., Das, S.S. Patil, S.G., 2021. “State of the art in total pulse production in major states of India using ARIMA techniques”. Current Research in Food Science, 4, pp. 800–806. https://doi.org/10.1016/j.crfs.2021.10.009 [CrossRef] [PubMed] [Google Scholar]
  • Moreno, M.L., Kuwornu, J.K. and Szabo, S., 2020. “Overview and constraints of the coconut supply chain in the Philippines. International Journal of Fruit Science” 20(sup2), pp.S524–S541. https://doi.org/10.1080/15538362.2020.1746727 [Google Scholar]
  • Naveena, K. Rathod, S., Shukla, G. and Yogish, K.J. (2014). “Forecasting of coconut production in India: A suitable time series model”. International Journal of Agricultural Engineering 7(1): 190–193. [Google Scholar]
  • Nita, Cristina et. al 2021. “Hard carbon derived from coconut shells, walnut shells, and corn silk biomass waste exhibiting high capacity for Na-ion batteries”. Journal of Energy Chemistry 58 : 207–218. https://doi.org/10.1016/j.jechem.2020.08.065 [CrossRef] [Google Scholar]
  • Peiris, T.S.G., Hansen, J.W., Zubair, L. 2007. “Use of seasonal climate information to predict coconut production in Sri Lanka”. International Journal of Climatology, 28 (1): 103–110. https://doi.org/10.1002/joc.1517 [Google Scholar]
  • Akbari, E., Mollajafari, M., Al-Khafaji, H.M.R., Alkattan, H., Abotaleb, M., Eslami, M., & Palani, S. (2022). Improved salp swarm optimization algorithm for damping controller design for multimachine power system. IEEE Access, 10, 82910–82922. [CrossRef] [Google Scholar]
  • Ray, S. Das, S.S., Mishra, P., Al Khatib, A.M.G. 2021. “Time Series, S.A.RIMA Modelling and Forecasting of Monthly Rainfall and Temperature in the South Asian Countries”. Earth Syst Environ, 5: 531–546. https://doi.org/10.1007/s41748-021-00205-w [CrossRef] [Google Scholar]
  • Seriño, Moises Neil, V., et. al. 2021. “Impact of the 2013 super typhoon haiyan on the livelihood of small-scale coconut farmers in Leyte Island, Philippines”. International Journal of Disaster Risk Reduction 52: 101939. https://doi.org/10.1016/j.ijdrr.2020.101939 [CrossRef] [Google Scholar]
  • Shil, S., Acharya, G.C., Paul, S.C., Paul, S. 2013. “Trend analysis and forecasting coconut production in Assam”. Journal of Plantation Crops 41 (2): 238–241. [Google Scholar]
  • Ehsan Khodadadi, S.K. Towfek, Hussein Alkattan. (2023). Brain Tumor Classification Using Convolutional Neural Network and Feature Extraction. Fusion: Practice and Applications, 13(2), 34–41. [CrossRef] [Google Scholar]
  • Yonar, A. Yonar, H., Mishra, P. et al. 2021. “Modeling and forecasting of wheat of South Asian region countries and role in food security”. Adv. in Comp. Int. 1, 11. https://doi.org/10.1007/s43674-021-00027-3 [Google Scholar]
  • Young, Warren, L. 1977. “The Box-Jenkins approach to time series analysis and forecasting: principles and applica-tions.” RAIRO-Operations Research-Recherche Opérationnelle 11, no. 2: 129–143. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.