Open Access
Issue |
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
|
|
---|---|---|
Article Number | 00115 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/bioconf/20249700115 | |
Published online | 05 April 2024 |
- S. Anand et al., “An orchestrated survey of methodologies for automated software test case generation,” Journal of Systems and Software, vol. 86, no. 8, pp. 1978–2001, 2013, doi: 10.1016/j.jss.2013.02.061. [CrossRef] [Google Scholar]
- A.A. Al-Sewari and K.Z. Zamli, “An orchestrated survey on T-way test case generation strategies based on optimization algorithms,” in Lecture Notes in Electrical Engineering, 2014. doi: 10.1007/978-981-4585-42-2_30. [Google Scholar]
- D.R. Kuhn, “An Application of Combinatorial Methods for Explainability in Artificial Intelligence and Machine Learning,” 2019, [Online]. Available: https://csrc.nist.gov. [Google Scholar]
- Z. Li, Y. Chen, G. Gong, D. Li, K. Lv, and P. Chen, “A Survey of the Application of Combinatorial Testing,” Proceedings - Companion of the 19th IEEE International Conference on Software Quality, Reliability and Security, QRS-C 2019, no. 2018, pp. 512–513, 2019, doi: 10.1109/QRSC.2019.00100. [Google Scholar]
- A. Arram, M. Ayob, and A. Sulaiman, “Hybrid bird mating optimizer with single-based algorithms for combinatorial optimization problems,” IEEE Access, 2021, doi: 10.1109/ACCESS.2021.3102154. [Google Scholar]
- B.J. Garvin, M.B. Cohen, and M.B. Dwyer, “Evaluating improvements to a meta-heuristic search for constrained interaction testing,” Empir Softw Eng, vol. 16, no. 1, 2011, doi: 10.1007/s10664-010-9135-7. [Google Scholar]
- C. Nie and H. Leung, “A survey of combinatorial testing,” ACM Comput Surv, vol. 43, no. 2, pp. 1–29, 2011, doi: 10.1145/1883612.1883618. [CrossRef] [Google Scholar]
- A.R.A. Alsewari and K.Z. Zamli, “Design and implementation of a harmony-search-based variablestrength t-way testing strategy with constraints support,” Inf Softw Technol, vol. 54, no. 6, pp. 553–568, 2012, doi: 10.1016/j.infsof.2012.01.002. [CrossRef] [Google Scholar]
- B.S. Ahmed and K.Z. Zamli, “PSTG: A t-way strategy adopting particle Swarm Optimization,” AMS2010: Asia Modelling Symposium 2010-4th International Conference on Mathematical Modelling and Computer Simulation, pp. 1–5, 2010, doi: 10.1109/AMS.2010.14. [Google Scholar]
- P. Galinier, S. Kpodjedo, and G. Antoniol, “A penalty-based Tabu search for constrained covering arrays,” GECCO 2017 - Proceedings of the 2017 Genetic and Evolutionary Computation Conference, pp. 1288–1294, 2017, doi: 10.1145/3071178.3071324. [Google Scholar]
- M. Mavrovouniotis, S. Yang, M. Van, C. Li, and M. Polycarpou, “Ant colony optimization algorithms for dynamic optimization: A case study of the dynamic travelling salesperson problem [Research Frontier],” IEEE Comput Intell Mag, vol. 15, no. 1, pp. 52–63, Feb. 2020, doi: 10.1109/MCI.2019.2954644. [CrossRef] [Google Scholar]
- J. Torres-Jimenez and I. Izquierdo-Marquez, “A simulated annealing algorithm to construct covering perfect hash families,” Math Probl Eng, vol. 2018, 2018, doi: 10.1155/2018/1860673. [CrossRef] [Google Scholar]
- M.M. Mafarja and S. Mirjalili, “Hybrid whale optimization algorithm with simulated annealing for feature selection,” Neurocomputing, vol. 260, 2017, doi: 10.1016/j.neucom.2017.04.053. [Google Scholar]
- I.A. AbdulJabbar and S.M. Abdullah, “Hybrid metaheuristic technique based tabu searchand simulated annealing,” Engineering and Technology Journal, vol. 35, no. 2, pp. 154–160, 2017. [CrossRef] [Google Scholar]
- W.H. Abdulsalam, R.S. Alhamdani, and M.N. Abdullah, “Emotion recognition system based on hybrid techniques,” Int J Mach Learn Comput, vol. 9, no. 4, 2019, doi: 10.18178/ijmlc.2019.9.4.831. [Google Scholar]
- H. Mercan, C. Yilmaz, and K. Kaya, “CHiP: A Configurable Hybrid Parallel Covering Array Constructor,” IEEE Transactions on Software Engineering, vol. 45, no. 12, pp. 1270–1291, 2019, doi: 10.1109/TSE.2018.2837759. [CrossRef] [Google Scholar]
- A.P. Agrawal, A. Choudhary, and A. Kaur, “An effective regression test case selection using hybrid whale optimization algorithm,” International Journal of Distributed Systems and Technologies, vol. 11, no. 1, pp. 53–67, Jan. 2020, doi: 10.4018/IJDST.2020010105. [CrossRef] [Google Scholar]
- A.B. Nasser, K.Z. Zamli, N.W.B.M. Nasir, W.A.H.M. Ghanem, and F. Din, “T-way Test Suite Generation Based on Hybrid Flower Pollination Algorithm and Hill Climbing,” in ACM International Conference Proceeding Series, Association for Computing Machinery, Feb. 2021, pp. 244–250. doi: 10.1145/3457784.3457822. [Google Scholar]
- Z. Li, Y. Chen, Y. Song, K. Lu, and J. Shen, “Effective Covering Array Generation Using an Improved Particle Swarm Optimization,” IEEE Trans Reliab, vol. 71, no. 1, pp. 284–294, Mar. 2022, doi: 10.1109/TR.2021.3132147. [CrossRef] [Google Scholar]
- M.I. Younis, “DEO: A dynamic event order strategy for T-way sequence covering array test data generation,” Baghdad Science Journal, vol. 17, no. 2, pp. 575–582, 2020, doi: 10.21123/bsj.2020.17.2.0575. [CrossRef] [Google Scholar]
- M.I. Younis, A.R.A. Alsewari, N.Y. Khang, and K.Z. Zamli, “CTJ: Input-output based relation combinatorial testing strategy using jaya algorithm,” Baghdad Science Journal, vol. 17, no. 3, pp. 1002–1009, 2020, doi: 10.21123/BSJ.2020.17.3(SUPPL.).1002. [CrossRef] [Google Scholar]
- B.N. Silva et al., “Urban Planning and Smart City Decision Management Empowered by Real-Time Data Processing Using Big Data Analytics”, doi: 10.3390/s18092994. [Google Scholar]
- E.K. Burke, M.R. Hyde, G. Kendall, G. Ochoa, E. Özcan, and J.R. Woodward, “A Classification of Hyper-Heuristic Approaches : Revisited,” International Series in Operations Research and Management Science, vol. 272, 2019. [Google Scholar]
- D. Moritz, J. Heer, and B. Howe, “Dynamic Client-Server Optimization for Scalable Interactive Visualization on the Web,” in Workshop on Data Systems for Interactive Analysis (DSIA ’15), 2015. [Online]. Available: http://www.interactive-analysis.org/papers/2015/moritz.pdf [Google Scholar]
- I. Barri, C. Roig, and F. Giné, “Distributing game instances in a hybrid client-server/P2P system to support MMORPG playability,” Multimed Tools Appl, vol. 75, no. 4, pp. 2005–2029, Feb. 2016, doi: 10.1007/s11042-014-2389-0. [CrossRef] [Google Scholar]
- S. Kumar, “A review on client-server based applications and research opportunity,” Int J Recent Sci Res, vol. 10, 2019. [Google Scholar]
- H.M. Fadhil, M.N. Abdullah, and M.I. Younis, “TWGH: A Tripartite Whale-Gray Wolf-Harmony Algorithm to Minimize Combinatorial Test Suite Problem,” Electronics (Basel), vol. 11, no. 18, 2022. [Google Scholar]
- H.M. Fadhil, M.N. Abdullah, and M.I. Younis, “Parallel-TWGH: A CPU/GPU Strategy to Speedup Combinatorial Test Suite, ” Engineered Science, Accepted. [Google Scholar]
- Y. Khalil, M. Alshayeji, and I. Ahmad, “Distributed whale optimization algorithm based on mapreduce,” Concurr Comput, vol. 31, no. 1, 2019, doi: 10.1002/cpe.4872. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.