Open Access
Issue |
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
|
|
---|---|---|
Article Number | 00140 | |
Number of page(s) | 35 | |
DOI | https://doi.org/10.1051/bioconf/20249700140 | |
Published online | 05 April 2024 |
- M. Czerny, “Über Photographie im Ultraroten,” Zeitschrift für Physik, vol. 53, no. 1-2, pp. 1–12, Jan. 1929, doi: 10.1007/BF01339378. [CrossRef] [Google Scholar]
- R. Berz, D. Gesellschaft für Thermographie, and R. Helmut Sauer, “The Medical Use of Infrared-Thermography History and Recent Applications.” [Online]. Available: www.ndt.net/search/docs.php3?MainSource=61 [Google Scholar]
- E. F. J. Ring, “The historical development of thermal imaging in medicine,” Rheumatology, vol. 43, no. 6. pp. 800–802, Jun. 2004. doi: 10.1093/rheumatology/keg009. [CrossRef] [PubMed] [Google Scholar]
- “Thermography and radiology complimentary methods for the study of inflammatory diseases”. [Google Scholar]
- E. F. J. Ring, “The historical development of thermal imaging in medicine,” Rheumatology, vol. 43, no. 6. pp. 800–802, Jun. 2004. doi: 10.1093/rheumatology/keg009. [CrossRef] [PubMed] [Google Scholar]
- R. K. Will, E. F. J. Ring, A. K. Clarke, and P. J. Maddison, “Infrared thermography: What is its place in rheumatology in the 1990s?,” Rheumatology, vol. 31, no. 5, pp. 337–344, May 1992, doi: 10.1093/rheumatology/31.5.337. [CrossRef] [Google Scholar]
- R. Lawson, “IMPLICATIONS OF SURFACE TEMPERATURES IN THE DIAGNOSIS OF BREAST CANCER*,” 1956. [Google Scholar]
- R. Berz and H. Sauer, “Infrarot Regulations Imaging - innovative Funktionsdiagnostik für Früherkennung, Prävention und Problemfälle,” Erfahrungsheilkunde, vol. 55, no. 5, pp. 241–250, May 2006, doi: 10.1055/s-2006-932327. [CrossRef] [Google Scholar]
- B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: A review,” Infrared Physics and Technology, vol. 55, no. 4. pp. 221–235, Jul. 2012. doi: 10.1016/j.infrared.2012.03.007. [CrossRef] [Google Scholar]
- “Infrared Imaging in Medicine”. [Google Scholar]
- G. Chernov, V. Chernov, and M. Barboza Flores, “3D Dynamic Thermography System for Biomedical Applications,” 2017, pp. 517–545. doi: 10.1007/978-981-10-3147-2_28. [Google Scholar]
- C. Meola, “Infrared thermography in the architectural field,” The Scientific World Journal, vol. 2013, 2013, doi: 10.1155/2013/323948. [CrossRef] [Google Scholar]
- E. F. J. Ring and K. Ammer, “Infrared thermal imaging in medicine,” Physiological Measurement, vol. 33, no. 3. IOP Publishing Ltd, 2012. doi: 10.1088/0967-3334/33/3/R33. [Google Scholar]
- K. Ammer, “The Glamorgan Protocol for recording and evaluation of thermal images of the human body.” [Online]. Available: https://www.researchgate.net/publication/233420893 [Google Scholar]
- A. L. Shada, L. T. Dengel, G. R. Petroni, M. E. Smolkin, S. Acton, and C. L. Slingluff, “Infrared thermography of cutaneous melanoma metastases,” Journal of Surgical Research, vol. 182, no. 1, p. e9, Jun. 2013, doi: 10.1016/j.jss.2012.09.022. [CrossRef] [Google Scholar]
- I. Lese et al., “Transcutaneous sentinel lymph node detection in cutaneous melanoma with indocyanine green and near-infrared fluorescence: A diagnostic sensitivity study,” Medicine (United States), vol. 101, no. 36, p. E30424, Sep. 2022, doi: 10.1097/MD.0000000000030424. [Google Scholar]
- S. J. Mambou, P. Maresova, O. Krejcar, A. Selamat, and K. Kuca, “Breast cancer detection using infrared thermal imaging and a deep learning model,” Sensors (Switzerland), vol. 18, no. 9. MDPI AG, Sep. 01, 2018. doi: 10.3390/s18092799. [CrossRef] [Google Scholar]
- S. S. Yadav and S. M. Jadhav, “Thermal infrared imaging based breast cancer diagnosis using machine learning techniques,” Multimed Tools Appl, vol. 81, no. 10, pp. 13139–13157, Apr. 2022, doi: 10.1007/s11042-020-09600-3. [CrossRef] [Google Scholar]
- P. T. Hankare, “Breast abnormality based early diagnosis of breast cancer using non-invasive digital infrared thermal imaging,” Int J Med Eng Inform, vol. 10, no. 4, 2018, doi: 10.1504/IJMEI.2018.095072. [Google Scholar]
- C. Li and Y. Liu, “Detecting intersegmental plane in thoracoscopic segmentectomy using infrared thermography,” Chinese Medical Journal, vol. 135, no. 1. Lippincott Williams and Wilkins, pp. 119–120, Jan. 05, 2022. doi: 10.1097/CM9.0000000000001806. [CrossRef] [PubMed] [Google Scholar]
- S. Guigard, F. Triponez, B. Bédat, J. Vidal-Fortuny, M. Licker, and W. Karenovics, “Usefulness of near-infrared angiography for identifying the intersegmental plane and vascular supply during video-assisted thoracoscopic segmentectomyi'.” Interact Cardiovasc Thorac Surg, vol. 25, no. 5, 2017, doi: 10.1093/icvts/ivx225. [Google Scholar]
- S. Guigard, W. Karenovics, M. Licker, J. Vidal-Fortuny, and F. Triponez, “F- 150PROSPECTIVE STUDY OF NEAR-INFRARED THORACOSCOPY FOR INTERSEGMENTAL PLANE IDENTIFICATION DURING VIDEO-ASSISTED THORACOSCOPIC SEGMENTECTOMY,” Interact Cardiovasc Thorac Surg, vol. 23, no. suppl 1, 2016, doi: 10.1093/icvts/ivw260.148. [Google Scholar]
- J. R. González et al., “An Approach for Thyroid Nodule Analysis Using Thermographic Images,” 2017, pp. 451–475. doi: 10.1007/978-981-10-3147-2_26. [Google Scholar]
- A. Santillan et al., “Discrimination of malignant from benign thyroid lesions through neural networks using FTIR signals obtained from tissues,” Anal Bioanal Chem, vol. 413, no. 8, pp. 2163–2180, Mar. 2021, doi: 10.1007/s00216-021-03183-0. [CrossRef] [PubMed] [Google Scholar]
- M. Dovjak, M. Shukuya, and A. Krainer, “Exergetic issues of thermoregulation physiology in different climates,” International Journal of Exergy, vol. 17, no. 4, 2015, doi: 10.1504/IJEX.2015.071558. [Google Scholar]
- “Human thermoregulation and measurement of body temperature in exercise and clinical settings - PubMed”. [Google Scholar]
- “Thermoregulation and Thermography in Neonatal Physiology and Disease - Robin B. Knobel, Bob D. Guenther, Henry E. Rice, 2011”. [Google Scholar]
- H. Y. Naser, A. Q. Al-Neami, and Y. Ibrahim, “Study the effect of temperature variable on the patient with jaundice stay period inside the incubator,” Medico- -Legal Update, vol. 20, no. 1, 2020, doi: 10.37506/v20/i1/2020/mlu/194391. [Google Scholar]
- “Application of Infrared to Biomedical Sciences Publisher: Springer Singapore Book Series : Series in BioEngineering.” [Google Scholar]
- R. Vardasca, C. Magalhaes, and J. Mendes, “Biomedical Applications of Infrared Thermal Imaging: Current State of Machine Learning Classification,” MDPI AG, Oct. 2019, p. 46. doi: 10.3390/proceedings2019027046. [Google Scholar]
- L. Iosif, C. Murariu-Măgureanu, E. Preoteasa, M. Bărbînță-Pătrașcu, and C. Preoteasa, “INFRARED RADIATION IN DENTISTRY; MEASURING HEAT EMISSION THROUGH PASSIVE METHOD OF THERMOGRAPHY,” 2021. [Google Scholar]
- T. S. Vinothkumar, “Application of Near-infrared Light Transillumination in Restorative Dentistry: A Review,” Journal of Contemporary Dental Practice, vol. 22, no. 11. Jaypee Brothers Medical Publishers (P) Ltd, pp. 1355–1361, 2021. doi: 10.5005/jp-journals-10024-3204. [Google Scholar]
- L. M. McIntosh, M. Jackson, H. H. Mantsch, J. R. Mansfield, A. N. Crowson, and J. W. P. Toole, “Near-infrared spectroscopy for dermatological applications,” Vib Spectrosc, vol. 28, no. 1, pp. 53–58, Feb. 2002, doi: 10.1016/S0924-2031(01)00165-5. [CrossRef] [Google Scholar]
- Z. S. Saleh, A. Q. Al-Neami, and H. K. Raad, “Smart monitoring pad for prediction of pressure ulcers with an automatically activated integrated electro- therapy system,” Designs (Basel), vol. 5, no. 3, Sep. 2021, doi: 10.3390/designs5030047. [Google Scholar]
- R. Kennedy, “Phototherapy as a Treatment for Dermatological Diseases, Cancer, Aesthetic Dermatologic Conditions and Allergenic Rhinitis in Adult and Paediatric Medicine,” Life, vol. 13, no. 1. MDPI, Jan. 01, 2023. doi: 10.3390/life13010196. [CrossRef] [PubMed] [Google Scholar]
- L. N. Bachache, J. A. Hasan, and A. Q. Al-Neami, “Acousto-optic Design to Measure Glucose Level for Diabetic Patients Non-invasively,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Mar. 2021. doi: 10.1088/1742-6596/1818/1/012147. [Google Scholar]
- J. A. Hasan, L. N. Bachache, and A. Q. Al-Neami, “Noninvasive glucose sensing system based on modified SPO2 sensor,” in AIP Conference Proceedings, 2021. doi: 10.1063/5.0065363. [Google Scholar]
- L. N. Bachache, A. Q. Al-Neami, and J. A. Hasan, “NONINVASIVE ACOUSTO- OPTIC GLUCOSE SENSING SYSTEM FOR DIABETIC COVID-19 PATIENTS,” 2021. [Google Scholar]
- L. N. Bachache, J. A. Hasan, and A. Q. Al-Neam, “A Review: Non Invasive Sensing System for Detection Glucose Level,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Jul. 2021. doi: 10.1088/1742-6596/1963/1/012125. [Google Scholar]
- G. Schiavon, G. Capone, M. Frize, S. Zaffagnini, C. Candrian, and G. Filardo, “Infrared Thermography for the Evaluation of Inflammatory and Degenerative Joint Diseases: A Systematic Review,” Cartilage, vol. 13, no. 2 suppl. SAGE Publications Inc., pp. 1790S–1801S, Dec. 01, 2021. doi: 10.1177/19476035211063862. [CrossRef] [PubMed] [Google Scholar]
- “Clinical applicability of infrared thermography in rheumatic diseases_ A systematic review - PubMed”. [Google Scholar]
- J. H. L. Branco, R. L. L. Branco, T. C. Siqueira, L. C. de Souza, K. M. S. Dalago, and A. Andrade, “Clinical applicability of infrared thermography in rheumatic diseases: A systematic review,” Journal of Thermal Biology, vol. 104. Elsevier Ltd, Feb. 01, 2022. doi: 10.1016/j.jtherbio.2021.103172. [Google Scholar]
- D. Lighter, A. Filer, and H. Dehghani, “Detecting inflammation in rheumatoid arthritis using Fourier transform analysis of dorsal optical transmission images from a pilot study,” J Biomed Opt, vol. 24, no. 06, p. 1, Jun. 2019, doi: 10.1117/1.jbo.24.6.066008. [CrossRef] [Google Scholar]
- A. Modrzejewska, “The role of thermography in ophthalmology,” OphthaTherapy. Therapies in Ophthalmology, vol. 9, no. 1. Medical Education, pp. 14–21, 2022. doi: 10.24292/01.OT.291221. [Google Scholar]
- E. Y. K. Ng and M. Etehadtavakol, “Series in BioEngineering.” [Online]. Available: http://www.springer.com/series/10358 [Google Scholar]
- Q. Zhang et al., “Screening Evaporative Dry Eyes Severity Using an Infrared Image,” J Ophthalmol, vol. 2021, 2021, doi: 10.1155/2021/8396503. [Google Scholar]
- B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: A review,” Infrared Physics and Technology, vol. 55, no. 4. pp. 221–235, Jul. 2012. doi: 10.1016/j.infrared.2012.03.007. [CrossRef] [Google Scholar]
- X. Yang, Q. Ou, W. Yang, Y. Shi, and G. Liu, “Diagnosis of liver cancer by FTIR spectra of serum,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 263, Dec. 2021, doi: 10.1016/j.saa.2021.120181. [Google Scholar]
- S. Liyanage and N. Abidi, “Fourier transform infrared applications to investigate induced biochemical changes in liver,” Applied Spectroscopy Reviews, vol. 55, no. 9. Bellwether Publishing, Ltd., pp. 840–872, Oct. 20, 2020. doi: 10.1080/05704928.2019.1692307. [CrossRef] [Google Scholar]
- M. U. Rehman et al., “Infrared Sensing Based Non-Invasive Initial Diagnosis of Chronic Liver Disease Using Ensemble Learning,” IEEE Sens J, vol. 21, no. 17, pp. 19395–19406, Sep. 2021, doi: 10.1109/JSEN.2021.3091471. [CrossRef] [Google Scholar]
- A. Burke et al., “Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation,” Proc Natl Acad Sci U S A, vol. 106, no. 31, pp. 12897–12902, Aug. 2009, doi: 10.1073/pnas.0905195106. [CrossRef] [PubMed] [Google Scholar]
- B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: A review,” Infrared Physics and Technology, vol. 55, no. 4. pp. 221–235, Jul. 2012. doi: 10.1016/j.infrared.2012.03.007. [CrossRef] [Google Scholar]
- A. M. De Grand and J. V. Frangioni, “An Operational Near-Infrared Fluorescence Imaging System Prototype for Large Animal Surgery,” Technol Cancer Res Treat, vol. 2, no. 6, pp. 553–562, 2003, doi: 10.1177/153303460300200607. [CrossRef] [PubMed] [Google Scholar]
- M. Madjid, J. T. Willerson, and S. W. Casscells, “Intracoronary Thermography for Detection of High-Risk Vulnerable Plaques,” Journal of the American College of Cardiology, vol. 47, no. 8 SUPPL. Apr. 18, 2006. doi: 10.1016/j.jacc.2005.11.050. [Google Scholar]
- B. D. MacNeill, H. C. Lowe, M. Takano, V. Fuster, and I. K. Jang, “Intravascular modalities for detection of vulnerable plaque: Current status,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 8. pp. 1333–1342, Aug. 01, 2003. doi: 10.1161/01.ATV.0000080948.08888.BF. [CrossRef] [PubMed] [Google Scholar]
- S. J. Birnbaum and D. Kliot, “THERMOGRAPHY—OBSTETRICAL APPLICATIONS,” Ann N Y Acad Sci, vol. 121, no. 1, pp. 209–222, 1964, doi: 10.1111/j.1749-6632.1964.tb13697.x. [CrossRef] [PubMed] [Google Scholar]
- J. Menczer and B. A. Eskin, “Evaluation of postpartum breast engorgement by thermography,” Obstetrics and Gynecology, vol. 33, no. 2, pp. 260–263, 1969. [PubMed] [Google Scholar]
- F. G. Costa, N. Hakimi, and F. Van Bel, “Neuroprotection of the perinatal brain by early information of cerebral oxygenation and perfusion patterns,” International Journal of Molecular Sciences, vol. 22, no. 10. MDPI, May 02, 2021. doi: 10.3390/ijms22105389. [Google Scholar]
- J. S. Wyatt, A. D. Edwards, D. Azzopardi, and E. O. R. Reynolds, “Magnetic resonance and near infrared spectroscopy for investigation of perinatal hypoxic- ischaemic brain injury,” Archives of Disease in Childhood, vol. 64, no. 7 SPEC NO. BMJ Publishing Group, pp. 953–963, 1989. doi: 10.1136/adc.64.7_Spec_No.953. [CrossRef] [PubMed] [Google Scholar]
- S. Ioannou, V. Gallese, and A. Merla, “Thermal infrared imaging in psychophysiology: Potentialities and limits,” Psychophysiology, vol. 51, no. 10. Blackwell Publishing Inc., pp. 951–963, 2014. doi: 10.1111/psyp.12243. [CrossRef] [PubMed] [Google Scholar]
- Y. V. Gulyaev, A. G. Markov, L. G. Koreneva, and P. V. Zakharov, “Dynamical Infrared Thermography in Humans,” IEEE Engineering in Medicine and Biology Magazine, vol. 14, no. 6, pp. 766–771, 1995, doi: 10.1109/51.473272. [CrossRef] [Google Scholar]
- A. G. Markov, L. G. Koreneva, A. V. Tarasov, and P. V. Zakharov, “Influence of personality and stress on the regulation of peripheral blood flow in humans,” New Trends in Experimental and Clinical Psychiatry, vol. 11, no. 1, pp. 13–18, 1995. [Google Scholar]
- G. Chernov, V. Chernov, and M. Barboza Flores, “3D Dynamic Thermography System for Biomedical Applications,” 2017, pp. 517–545. doi: 10.1007/978-981-10-3147-2_28. [Google Scholar]
- J. Yang, Y.-B. Lee, Y.-H. Sung, D.-J. Shin, Y.-J. Kim, and H.-M. Park, “Usefulness of infrared thermography in diagnosing and evaluating severity of carpal tunnel syndrome,” Annals of Clinical Neurophysiology, vol. 23, no. 2, pp. 99–107, Oct. 2021, doi: 10.14253/acn.2021.23.2.99. [CrossRef] [Google Scholar]
- Z. Zou, S. Zeng, J. T. Tang, Z. Fan, and J. Cui, “Infrared Thermography: Clinical Value for Diagnosing Persistent Somatoform Pain Disorders?,” Pain Physician, vol. 26, no. 5, pp. E529–E537, Sep. 2023. [PubMed] [Google Scholar]
- M. Putowski et al., “The use of electromagnetic radiation in the physiotherapy,” 2016. [Online]. Available: www.medical-technologies.eu [Google Scholar]
- L. Monje-Arenas and N. Pérez-Mallada, “Medical Thermography,” in Photography in Clinical Medicine, Springer International Publishing, 2020, pp. 515–526. doi: 10.1007/978-3-030-24544-3_30. [CrossRef] [Google Scholar]
- L. Nasseer Bachache, A. Qusai Al-Neami, and J. A. Hasan, “Error grid analysis evaluation of noninvasive blood glucose monitoring system of diabetic Covid-19 patients,” Int. J. Nonlinear Anal. Appl, vol. 13, pp. 2008–6822, 2022, doi: 10.22075/ijnaa.2022.6147. [Google Scholar]
- D. Perpetuini, C. Filippini, D. Cardone, and A. Merla, “An overview of thermal infrared imaging-based screenings during pandemic emergencies,” International Journal of Environmental Research and Public Health, vol. 18, no. 6. MDPI AG, pp. 1–12, Mar. 02, 2021. doi: 10.3390/ijerph18063286. [Google Scholar]
- M. Sillero-Quintana et al., “Infrared thermography as a support tool for screening and early diagnosis in emergencies,” J Med Imaging Health Inform, vol. 5, no. 6, pp. 1223–1228, Dec. 2015, doi: 10.1166/jmihi.2015.1511. [CrossRef] [Google Scholar]
- M. Sillero-Quintana et al., “Infrared thermography as a support tool for screening and early diagnosis in emergencies,” J Med Imaging Health Inform, vol. 5, no. 6, pp. 1223–1228, Dec. 2015, doi: 10.1166/jmihi.2015.1511. [CrossRef] [Google Scholar]
- C. Hildebrandt, C. Raschner, and K. Ammer, “An overview of recent application of medical infrared thermography in sports medicine in Austria,” Sensors, vol. 10, no. 5, pp. 4700–4715, May 2010, doi: 10.3390/s100504700. [CrossRef] [PubMed] [Google Scholar]
- J. Selfe, N. Hardaker, D. Thewlis, and A. Karki, “An Accurate and Reliable Method of Thermal Data Analysis in Thermal Imaging of the Anterior Knee for Use in Cryotherapy Research,” Arch Phys Med Rehabil, vol. 87, no. 12, pp. 1630–1635, Dec. 2006, doi: 10.1016/j.apmr.2006.08.346. [CrossRef] [PubMed] [Google Scholar]
- C. Hildebrandt, K. Zeilberger, E. F. John Ring, and C. Raschner, “The Application of Medical Infrared Thermography in Sports Medicine,” in An International Perspective on Topics in Sports Medicine and Sports Injury, InTech, 2012. doi: 10.5772/28383. [Google Scholar]
- I. Fernández-Cuevas, J. Arnáiz Lastras, V. Escamilla Galindo, and P. Gómez Carmona, “Infrared Thermography for the Detection of Injury in Sports Medicine,” 2017, pp. 81–109. doi: 10.1007/978-3-319-47410-6_4. [Google Scholar]
- M. Sillero-Quintana, P. M. Gomez-Carmona, and I. Fernández-Cuevas, “Infrared Thermography as a Means of Monitoring and Preventing Sports Injuries,” 2017, pp. 165–198. doi: 10.4018/978-1-5225-2072-6.ch008. [Google Scholar]
- M. Hale, “Near infrared whole body imaging,” Botulinum Journal, vol. 2, no. 2, 2012, doi: 10.1504/TBJ.2012.050201. [Google Scholar]
- A. Papagiannaros, T. Levchenko, W. Hartner, D. Mongayt, and V. Torchilin, “Quantum dots encapsulated in phospholipid micelles for imaging and quantification of tumors in the near-infrared region,” Nanomedicine, vol. 5, no. 2, 2009, doi: 10.1016/j.nano.2008.10.001. [Google Scholar]
- Y. Teng, Y. Li, and X. Hou, “Non-invasive detecting human tissue hemoglobin concentrations using near-infrared spectroscopy with in vivo calibration,” International Journal of Mechatronics and Automation, vol. 2, no. 1, 2012, doi: 10.1504/IJMA.2012.046586. [Google Scholar]
- A. Mann, “Infrared optics and zoom lenses.” [Google Scholar]
- P. Klocek, “HANDBOOK OF INFRARED OPTIC AIM ATERÍAIS.” [Google Scholar]
- Jeremy S. Cook, “Understanding Active & Passive Infrared Sensors (PIR) and Their Uses _ Arrow.com,” Understanding Active & Passive Infrared Sensors (PIR) and Their Uses, 2018. [Google Scholar]
- “newsletter-Issue-3.4-linked-INFRARED SENSOR - WHAT IT IS, CLASSIFICATION, HOW IT WORKS, TYPES, APPLICATIONS, A&D”. [Google Scholar]
- A. Kylili, P. A. Fokaides, P. Christou, and S. A. Kalogirou, “Infrared thermography (IRT) applications for building diagnostics: A review,” Applied Energy, vol. 134. Elsevier Ltd, pp. 531–549, Dec. 01, 2014. doi: 10.1016/j.apenergy.2014.08.005. [CrossRef] [Google Scholar]
- C. D. Tran, “Principles, instrumentation, and applications of infrared multispectral imaging, an overview,” Analytical Letters, vol. 38, no. 5. pp. 735–752, 2005. doi: 10.1081/AL-200047754. [CrossRef] [Google Scholar]
- Yurish S., “Sensors and Biosensors, MEMS Technologies and its Applications,” 1965. [Google Scholar]
- C. D. Tran, “Principles, instrumentation, and applications of infrared multispectral imaging, an overview,” Analytical Letters, vol. 38, no. 5. pp. 735–752, 2005. doi: 10.1081/AL-200047754. [CrossRef] [Google Scholar]
- A. Khoshakhlagh, “Design of a Readout Integrated Circuit (ROIC) for Infrared Imaging Applications,” 2011. [Online]. Available: https://digitalrepository.unm.edu/ece_etds/135 [Google Scholar]
- S. Bagavathiappan, B. B. Lahiri, T. Saravanan, J. Philip, and T. Jayakumar, “Infrared thermography for condition monitoring - A review,” Infrared Physics and Technology, vol. 60. pp. 35–55, 2013. doi: 10.1016/j.infrared.2013.03.006. [CrossRef] [Google Scholar]
- M. Diakides, J. D. Bronzino, and D. R. Peterson, Medical infrared imaging: Principles and practices. CRC Press, 2012. doi: 10.1201/b12938. [CrossRef] [Google Scholar]
- “MEDICAL INFRARED IMAGING PRINCIPLEs AND PRACtICEs.”. [Google Scholar]
- A. Rogalski, “History of infrared detectors,” Opto-Electronics Review, vol. 20, no. 3, pp. 279–308, 2012, doi: 10.2478/s11772-012-0037-7 [CrossRef] [Google Scholar]
- W. K. Wong, P. N. Tan, C. K. Loo, and W. S. Lim, “An effective surveillance system using thermal camera,” in 2009 International Conference on Signal Acquisition and Processing, ICSAP 2009, 2009, pp. 13–17. doi: 10.1109/ICSAP.2009.12. [CrossRef] [Google Scholar]
- G. A. Raouf et al., “Infrared spectroscopy of human bone marrow: Evidence of structural changes during acute leukemia,” International Journal of Nano and Biomaterials, vol. 2, no. 1-5, 2009, doi: 10.1504/IJNBM.2009.027724. [Google Scholar]
- Q. Alneami, E.G. Khalil, R.A. Mohsien, and A.F. Albeldawi, “Effect of Electrical Current Stimulation on Pseudomonas Aeruginosa Growth,” in Journal of Physics: Conference Series, Institute of Physics Publishing, May 2018. doi: 10.1088/1742-6596/1003/1/012112. [Google Scholar]
- A. A. Q, K. E. Gh, M. R. A, A. A. F, and A.F. Albeldawi, “A Comparison of Six Ultrasound Stimulation Types on Pseudomonas Aeruginosa Growth in Vitro,” 2018. [Online]. Available: www.jbpe.org [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.